Author: Villari, A.C.C.
Paper Title Page
WEPAF04 Longitudinal Beam Dynamics in FRIB and ReA Linacs 330
 
  • A.S. Plastun, P.N. Ostroumov, A.C.C. Villari, Q. Zhao
    FRIB, East Lansing, USA
 
  The Front-End and first three cryomodules of the Facility for Rare Isotope Beam (FRIB) at Michigan State University (MSU) commissioned in July, 2018. The paper describes the online tuning procedures of the longitudinal beam dynamics through the FRIB linac. These procedures include tuning of the accelerating field phases and amplitudes in the cavities. We developed an automated simulation-based tuning procedure for the multi-harmonic buncher. In order to tune the radio-frequency quadrupole (RFQ) we measured and calculated its threshold voltage and scanned its longitudinal acceptance. Tuning of the rebunchers and superconducting accelerating cavities is per-formed by means of the phase scans and Time-Of-Flight (TOF) beam energy measurements with beam position and phase monitors. While FRIB is being commissioned, the re-accelerator (ReA3) for rare isotope beams (RIBs) is being upgraded. We redesigned the ReA3 RFQ to improve its cooling system and provide reliable operation with 16.1 MHz prebunched ion beams with A/Q = 5. In order to provide matching of any ReA3 beam both to the following upgrade cryomodules and physics experiments’ requirements, room temperature rebuncher/debuncher is being designed. The design procedure includes the beam dynamics, electromagnetic, thermal and mechanical simulations and optimizations.  
slides icon Slides WEPAF04 [2.406 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-WEPAF04  
About • paper received ※ 19 October 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)