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Abstract
Designing and commissioning particle accelerators need

great optimization efforts. This is particularly true for large
accelerators with complex components that provide stable
beam such as light sources and colliders, where nonlinear-
ities of the beam play an important role. Currently, many
design optimizations are provided by individual user-created
automated problem-finding and solution-proposing algo-
rithms, which requires an extensive amount of computing
resources. Heuristic algorithms such as Genetic Algorithms
(GA) and Simulated Annealing (SA) are commonly imple-
mented. They are either created for individual tasks, or are
implemented directly in simulation codes, such as OPAL
or IMPACT3D. An optimization suite that is independent
of the accelerator codes is needed for general application
studies. Meanwhile, researchers now have access to the HPC
resources, which can be utilized for parallelization of codes.
We propose a Python-based optimization suite for general
applications. In this paper, we introduce the pyaopt suite by
giving some details of its applications, including a design
of an SRF photogun for UEMs.

INTRODUCTION
Recently, there has been multiple new applications of

heuristic algorithms in the particle accelerator community.
The fields include secondary particle collection [1], DA
optimizations [2, 3], and space charge calculations [4]. In
most of these cases, algorithms were customized for specific
physics problems, or built in a specific simulation program.
In fact, the number of programs that include the Genetic
Algorithm (GA) as the multi-objective optimizer is rapidly
increasing [5, 6]. However, for many accelerator physicists
and engineers, these algorithms are still inaccessible to some
extent: there is no easy way to use them in a “plug and play“
fashion.

The design of Python advanced optimization pyaopt suite
aims at delivering a package that has an API for users to
conveniently describe the optimization problem, select the
optimization algorithm and start the job. It not only includes
widely-accepted algorithms such as the GA, Simulated An-
nealing (SA) and the Particle Swarm Algorithm (PSA), but
also gradient-based (deterministic) algorithms, such as the
Gauss-Newton method, etc. The goal of the Python-based
package is to let users run optimization jobs in any environ-
ments, including a personal computer, a small-scale cluster,
or a HPC supercomputer. Users may select the mode such
∗ SRF cavity design work supported by DOE under contract DE-
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† a.liu@euclidtechlabs.com

Figure 1: The flowchart of running optimization jobs on an
HPC machine.

that the pyaopt job manager can handle the job submission,
monitoring, and logging. The idea of running the jobs on
an HPC is illustrated in Figure 1.

pyaopt includes a few customized metaheuristic algo-
rithms and some deterministic algorithms. We introduce a
selection of the metaheuristics below:

• pyaopt-GA, which is based on the NSGA-II [7] and
can do both single-objective GA (SOGA) and multi-
objective GA (MOGA). The customization is on the
crowding distance (CD) of individuals, which repre-
sents the similarities of them, and the “rescue method“:
judgment day, which is used only when the whole pop-
ulation seizes improving prematurely. The algorithm
is enhanced by MPI [8], such that calculations of dom-
inance and CD are distributed on different ranks.

• pyaopt-SA, which is based on the standard annealing
formula P = e( f (x)− f (x

′)/T ) for f (x) < f (x ′), where
f (x) is the fitness value for solution x, and T is the cur-
rent temperature. The customization is on the adaptive
cooling schedule, ∆T per iteration, and on the cooling
range assignment for MPI implementation. Although
it is already a common practice to normalize the fitness
value to an expected one and implemented by many SA
users, using an adaptive cooling schedule further helps
to prevent the system to converge prematurely. As for
the search range where multiple workers are present,
users can choose how many slices each variable’s range
needs to be divided, based on the number of workers
available. Then pyaopt allocates each combination of
range slices evenly to the workers.

• pyaopt-ANN, which is based on multiple artificial neu-
ral network (ANN) algorithms. The parallelization is
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done through both the forward and backward propaga-
tions of data, in simply a batch fashion.

pyaopt can be installed on multi-platforms, thanks to the
installation capabilities brought by the setuptools [9] pack-
age. Our idea is to make this process painless, such that
modules targeted for different computing accelerator archi-
tecture that are available on the machine can be automatically
detected by the setup code, or specified by the users (when
the installation frontend cannot see the heterogeneity from
the worker’s point of view.

The variable ranges are specified in a JSON [10] file
(we are also investigating the HDF5 [11] format to contain
the metadata of all the input, output and log files). The
API provides the proposed combinations of variables (each
combination of variable values is hereafter referred as “in-
dividual”), and users specify the functions to be called by
pyaopt for evaluation of individuals.

EXAMPLES OF APPLICATIONS
In this section we use some applications of pyaopt to

demonstrate its capability to be used on different areas of
accelerator physics.

nuSTORM Magnetic Horn
The neutrinos from STORed Muons (nuSTORM) uses

a magnetic horn to capture the secondary pions generated
from bombarding a long target rod with high energy protons.
Because of the finite length of the target rod, the original
point-to-parallel principle of a simple horn design with dou-
ble parabolic surface is no longer optimal. The horn has to
be re-designed for each target that has different materials,
lengths and diameters, even when the primary proton beam
parameters are fixed. In this example, we used a 46 cm In-
conel target, with a radius of 3 mm. We used the MOGA for
this purpose, where one of the two objectives is to maximize
the number of pions within the transverse phase space, and
other is to maximize that in a the momentum acceptance
described by a derived formula. Figure 2 shows the varia-
tion of fitness values for the dominant elite candidate in each
generation. This treatment of converting a single-objective,
time-consuming multiparticle tracking-based optimization
was efficient in dramatically saving the optimization time
and increase the acceptable pions at the end of the pion
beamline by 13%.

nuSTORM Muon Storage Ring
The physics objective is to store as many muons in the

2 mm·rad full transverse admittance and 3.8 ± 10% GeV/c.
Since this is an extra large beam, multiple nonlinearity terms
of the beam optics become critical as stop bands for beam
circulation in the ring. Sextupoles are introduced in the
lattice, in both standalone sextupole magnets and also as
combined-function Therefore, instead of isolating the non-
linearity terms one by one and evaluate the importance of
each, we chose to directly rely on mult-particle tracking re-
sult as the single optimization objective. Since 90% of the

Figure 2: The variation of fitness values of the dominant
elite candidate in each generation.

Figure 3: The variation of fitness value of the best solution
in each generation.

muons will decay to neutrinos in approximately 100 turns,
the percentage of survived muons after 100 turns was used
as the evaluation function. We then chose SA for this task.
The variation of fitness value per generation is shown in
Figure 3. The momentum acceptance is compared for before
and after the sextupole correction with the optimized setting
in Figure 4.

The suite was also used on the optimization for a Step
IV lattice of the international Muon Ionization Cooling Ex-
periment (MICE) [12], 6D ionization cooling channel, etc.
Because the suite was designed for general optimization
problems, we foresee more areas of applications. In the next
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Figure 4: The improvement of momentum acceptance after
the sextupole correction with the optimized setting.

section we discuss about its application on the design of an
SRF photogun for UEMs.

SRF PHOTOGUN FOR UEMS
Benefiting from the rapid progress on RF photocathode

gun technologies in the past two decades, the development of
MeV-range ultrafast electron diffraction/microscopy (UED
and UEM) has been identified as an enabling instrumen-
tation, which may lead to breakthroughs in fundamental
science and applied technologies [13–15]. In a UED/UEM,
stable femtosecond (fs) electron bunches that are synchro-
nized with fs laser pulses is required. Currently, there are
room temperature RF photocathode electron guns for gener-
ating MeV electrons for UED/UEM. However, the shot-to-
shot stability for those machines is still low to fully satisfy
requirements from the UED/UEM community. Here we
propose a 1.3 cell, 1.3 GHz SRF cavity as the UEM electron
gun. The innovations of this structure include but are not
limited by:

• It uses a Euclid-designed, ILC type SRF cavity cell
with a novel detachable coupler, which was inherited
from our previously completed DoE SBIR project (DE-
SC0002479). The advantage of using this cell is that
the manufacturing and operation time for the whole
SRF cavity is dramatically reduced.

• It uses the backwall of the first 0.3 cell as the photo-
cathode, where the quantum efficiency (QE) of the high
RRR Niobium (Nb) is up to 10−5.

• By using the novel technologies of conduction cooling
and coating of Nb3Sn, which are what Euclid and Fer-
milab are collaborating on now, the peak axial electric

Figure 5: Simulation of the conduction cooling scheme in
COMSOL. Figure courtesy of R. Kostin, Euclid Techlabs.

Figure 6: CST simulation of the 1.3 cell SRF cavity and the
corresponding axial field, normalized to a maximum value
of 20 MV/m.

field (Ez) can reach 26 MV/m. Moreover, the conduc-
tion cooling allows one to use a cryocooler, without
liquid helium, to cool down an SRF structure. See
Figure 5 for a COMSOL simulation of the conduction
cooling scheme. See also [16] for the published news
on the scheme by Fermilab.

Figure 6 shows the designed cavity in CST, and the cor-
responding field scaled to a conservative estimate of peak
axial Ez of 20 MV/m.

The back wall geometry was preliminarily optimized to
provide transverse RF focusing when the beam is generated
at the cathode. It has a unique “step” design where the flat
face is used for photocathode, and the curved geometry pro-
vide the transverse field needed. pyaopt is able to parallelize
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the RF simulation in Superfish [17] on a Linux cluster or the
OSX platform via using a WineHQ container. The resultant
field is then used in Astra [18] for multi-particle tracking.
In Table 1, beam parameters suitable for UED/UEM appli-
cations, simulated in Astra with space charge effect with
the gun design shown in Figure 6, are listed and compared.
Further more thorough optimizations will be done in the
future studies.

Table 1: Beam parameters for UED/UEM Applications

Parameter name [unit] Value
Application UED UEM
Beam Energy [MeV] 1.655 1.655
Charge per pulse [fC] 5 500
Laser pulse length [fs] 6.4 6.4
Laser spot size [µm] 36 180
Bunch length [fs] 167 741
Beam emittance [nm] 6.6 39
Relative energy spread [1] 1.3 × 10−5 6.4 × 10−5

FUTURE WORK
The Python wrapper, pyCUDA, will be implemented in

pyaopt in the future to utilize users’ NVIDIA GPU accel-
erators, or GPU on NERSC [19]. Furthermore, in order to
implement algorithms that are more robust against noises,
such that the suite can be deployed on experimental jobs,
we will add the RCDS [20] algorithm to pyaopt soon in the
future. More test cases, such as a collaboration with lattice
design work at BNL [3] will also be considered.

CONCLUSIONS
We are actively developing a Python-based optimization

suite, pyaopt to let users conveniently describe and run opti-
mization problems on personal computers, small-scale clus-
ters or HPC supercomputers. pyaopt includes a selection of
deterministic and metaheuristic algorithms and allow users
to run them in parallel mode. We showed two test cases for
the GA and SA of pyaopt on nuSTORM related studies. The
algorithm was also tested by cases of optimizations for MICE
and 6D ionization cooling channel designs. In all cases the
suite works efficiently in reducing the computing time and
finding optimal solutions. By using WineHQ, we are able to
combine RF and tracking simulations by Superfish and Astra
on OSX or Linux platforms. A preliminary optimization on
the SRF photogun design shows promising beam qualities
for it to be applied to UED/UEM. The SRF photogun has
multiple advantages over the room-temperature photoguns,
including its superstability, CW mode operation enabled by
the conduction cooling, etc.
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