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Abstract
We derive a Hamiltonian description of a continuous par-

ticle distribution and its electrostatic potential from the Low
Lagrangian. The self consistent space charge potential is
discretized according to the spectral Galerkin approximation.
The particle distribution is discretized using macro-particles.
We choose a set of initial and boundary conditions to model
the TRIUMF 300keV thermionic DC electron gun. The field
modes and macro-particle coordinates are integrated self-
consistently. The current status of the implementation is
discussed.

INTRODUCTION
The section of beamline we are trying to model includes

the electron gun (Fig. 1) and one solenoid, a total length of
57 cm up to the first view screen. The electrons are emitted
from a hot cathode. An RF grid is placed a fraction of
a millimetre downstream from the cathode. It is used to
modulate the emission of electrons at 650 MHz. Electrons
are accelerated to 300 keV using a DC field. The distance
between the cathode and the ground electrode is 12 cm. The
emitting surface of the cathode has a radius of 4 mm. The
nominal bunch charge is 15 pC with a bunch length of 130 ps,
see [1]. The solenoid enables us to adjust the phase advance
between the cathode and the view screen. At a particular
phase advance, we can use the electron beam to create an
image of the RF grid on the view screen see Fig. 2. Scanning
the phase advance enables us to measure the transverse phase
space distribution using tomography [2]. Our objective is to
reproduce these measurements using an algorithm derived
from the least action principle like in [3–5]. The description
of thermionic emission and effects from the grid are outside
the scope of this model.

Following classical field theory conventions, let an over
dot ‘·’ represent an explicit derivative with respect to time,
and similarly a prime ‘′’ denotes a partial derivative with
respect to z. We write the vectors that lie in the transverse
xy plane with a lower ‘⊥’. For example: x⊥ is the vector
(x, y,0).

CONTINUOUS MODEL
We start from the Low Lagrangian [6] which is a sum of

two integrals:

L =
∫

d3x0d3 Ûx0 Lp(x(x0, Ûx0, t), Ûx(x0, Ûx0, t); x0, Ûx0, t)

+

∫
d3x̄L f (φ,A; x̄, t) ,

(1)

Figure 1: OPERA Model of the 300 keV TRIUMF electron
gun with equipotential lines of the electric potential.

Figure 2: The view screen image, after the first solenoid.

where the Lagrangian densities are:
Lp(x, Ûx; x0, Ûx0, t) =

f (x0, Ûx0)
(
−mc2

√
1 − | Ûx|2/c2 − qφ(x, t) + q Ûx · A(x, t)

)
,

(2)
L f (φ,A; x, t) =

ε0
2

(��∇φ(x, t) + ÛA(x, t)��2 − c2 |∇ × A(x, t)|2
)
.

(3)

and x̄ is a dummy variable of integration.
To describe the self field we make the assumption that in

the centre of mass frame the self field is completely described
by the scalar potential ϕ(x, t), and the vector potential is
zero. We assume that the beam is travelling in the positive
z-direction, with unit vector ẑ. Now, by applying an active
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Lorentz transformation we find that this field corresponds
to:

φ(x, t) =γ0ϕ(x, t) , (4)

A(x, t) =
β0
c
γ0ϕ(x, t)ẑ =

β0
c
φ(x, t)ẑ , (5)

in the laboratory frame. The fields before and after trans-
formation are functions of the coordinates in the laboratory
frame. cβ0 is the centre of mass velocity and γ0 is the corre-
sponding Lorentz factor. We also assume:

Ûx · ẑ ≈ cβ0 . (6)
Now, we can write the new Lagrangian densities as:
Lp(x, Ûx; x0, Ûx0, t) = − f mc2

√
1 − | Ûx|2/c2 − f qγ−2

0 φ(x, t) ,
(7)

L f (φ; x̄, t) =
ε0
2

(
γ−2

0 |∇⊥φ(x̄, t)|
2 +

��∂z̄φ(x̄, t) + c−1∂t (β0φ(x̄, t))
��2) ,

(8)
so we have described the self field using only a scalar poten-
tial.

To check the reasonableness of the field Lagrangian we
look at the equation of motion for the scalar field which is:(

∂z +
β0
c
∂t

)2
φ +

β′0
c
Ûφ + (1 − β2

0)∇
2
⊥φ = 0 . (9)

In the ultra-relativistic limit β0 = 1 we find that the trans-
verse dynamics of φ become frozen and we have the follow-
ing equation of motion:(

∂z +
1
c
∂t

)2
φ = 0 . (10)

The solutions to this equation are wave-fronts travelling in
the z direction with speed c. In the stationary limit β0 = 0
we find the Laplace equation:

φ′′ + ∇2
⊥φ = 0 . (11)

Thus far we have described a Lagrangian system with two
main assumptions, the self-field in the beam frame is elec-
trostatic and that ∆β/β0 � 1.

Change of Independent Variable
Changing the independent variable in the Lagrangian is

done using coordinate transformation [7, 8]. We find that
the new Lagrangian density is:
Lp(x⊥, t,x′⊥, t ′; z) =

− f mc
√
(ct ′)2 − |x′⊥ |2 − 1 − f qγ−2

0 t ′φ(x⊥, t, z) ,
(12)

and the field Lagrangian density is unchanged.

Hamiltonian
Since we have taken z as the independent variable, we can

take γ0 and β0 to be solely functions of z. The momentum
density canonically conjugated to particle position is:

Px⊥ (x0, y0, t0, x ′0, y
′
0, t
′
0, z) =

∂Lp

∂x′⊥
=

f mcx′⊥√
(ct ′)2 − |x′⊥ |2 − 1

,
(13)

−E(x0, y0, t0, x ′0, y
′
0, t
′
0, z) =

∂Lp

∂t ′

=
− f mc3t ′√

(ct ′)2 − |x′⊥ |2 − 1
− f qγ−2

0 φ .
(14)

As for the scalar potential, we have that:

πφ(x⊥, t, z) =
∂L f

∂φ′
= ε0

(
∂z +

β0
c
∂t

)
φ . (15)

So, we find the Hamiltonian to be:

H=
∫

dx0dy0dt0dx ′0dy′0dt ′0Hp(x⊥, t,P⊥,E; x0, y0, t0, x ′0, y
′
0, t
′
0)

+

∫
d2x̄⊥dt̄Hf (φ, πφ; x̄⊥, t̄, z) ,

(16)
where the Hamiltonian densities are given by the Legendre
transform:
Hp =Px⊥ · x

′
⊥ − Et ′ − Lp

= −

√
1
c2

(
E − q f γ−2

0 φ(x⊥, t, z)
)2
− |P⊥ |2 − (m f c)2 ,

(17)

Hf =πφφ
′ − L f =

π2
φ

2ε0
−
β0
c
πφ Ûφ −

ε0

2γ2
0
(∇⊥φ)

2 . (18)

Lastly, we can examine the equations of motion:

x′⊥ =
P⊥
Pz
, P′⊥ =q f γ−2

0 t ′ ∇⊥φ(x⊥, t, z),

t ′ =
E − q f γ−2

0 φ(x⊥, t, z)
c2Pz

, E ′ =q f γ−2
0 t ′ ∂tφ(x⊥, t, z),

(19)
where

Pz =

√
1
c2

(
E − q f γ−2

0 φ(x⊥, t, z)
)2
− |P⊥ |2 − (m f c)2 ,

(20)
as well as the equations of motion for the scalar potential
canonical pair:

φ′ =
πφ

ε0
−
β0
c
Ûφ , π′φ =

ε0

γ2
0
∇2
⊥φ +

β0
c
Ûφ . (21)

These equations of motion are useful to get an intuitive
picture of the model. To obtain the discrete Hamiltonian we
can now discretize our Lagrangian system and follow the
same steps.

DISCRETEIZATION
Our choice of discretization scheme is:

f (x0, Ûx0) =
∑
j

w jδ(3)(xj
0 − x0)δ

(3)(Ûxj
0 − Ûx0) , (22)

φ(x, y, t, z) =∑
nm`

Φnm`(z) cos
(

nπx
Lx

)
cos

(
mπy
Ly

)
cos

(
`π∆t

Lt

)
,

(23)

where the particle distribution is a sum of Dirac delta func-
tions which gives us point-like model particles. The basis
functions of the scalar potential are chosen such that each of
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them satisfies the boundary conditions, the Galerkin approxi-
mation. The field is contained in the box of size Lx ×Ly ×Lt

and is zero at the boundaries. The self field is periodic in
time with the period being the RF period, and zero at the
boundaries. The field mode labels n,m, ` are positive odd
integers. This selects the modes that satisfy the boundary
conditions and are even functions about each axis.

Substituting these into the Lagrangian, simplifying and
solving for the Hamiltonian gives:

H =
∑
j

H j(xj
⊥,P

j
⊥, t

j,E j ; z) +
∑
nm`

Hnm`(Φnm`,Πnm` ; z) ,

(24)
where the model particle Hamiltonian for particle j is:

H j = −

√
1
c2

(
P j
t − qw jγ−2

0 φ(xj
⊥, t j, z)

)2
− |Pj

⊥ |
2 − (mw jc)2

− (∆E j + E0)t ′0 + ∆t jE ′0 ,
(25)

and for field mode n,m, ` it is:
Hnm` =

1
2V
Π

2
nm` −

V
2γ2

0

((
nπ
Lx

)2
+

(
mπ
Ly

)2
+

(
β0γ0`π

cLt

)2
)
Φ

2
nm` ,

(26)
where V is a volume factor given by V = 1

8 ε0LxLyLt . Note
that the πφ Ûφ term became decoupled in this Hamiltonian
because of the orthogonality of the basis functions and its
derivatives. The discretized Hamiltonian yields an equation
of motion for each of the discrete degrees of freedom.

The equations of motion for the macro-particles are:

xj ′
⊥ =

Pj
⊥

P j
z

, ∆t j ′ =
P j
t − qw jγ−2

0 φ(xj
⊥, t

j, z)

c2P j
z

+ t ′0 , (27)

Pj ′
⊥ =w

jqγ−2
0 (t

′
0 − ∆t j ′)∇⊥φ(xj

⊥, t
j, z) ,

∆E j ′ =w jqγ−2
0 (t

′
0 − ∆t j ′) Ûφ(xj

⊥, t
j, z) − E ′0 ,

(28)

where the longitudinal particle momentum is calculated by:

P j
z = −

√
1
c2

(
P j
t − qw jγ−2

0 φ(xj
⊥, t j, z)

)2
− |Pj

⊥ |
2 − (mw jc)2 .

(29)
Also, the equations of motion for the field modes are given
by:

Φ
′
nm` =

1
V
Πnm` ,

Π
′
nm` =

V
γ2

0

((
nπ
Lx

)2
+

(
mπ
Ly

)2
+

(
β0γ0`π

cLt

)2
)
Φnm`

+
∑
j

qw j

c2γ2
0
(∆t j ′− t ′0) cos

(
nπx j

Lx

)
cos

(
mπy j

Ly

)
cos

(
`π∆t j

Lt

)
,

(30)

IMPLEMENTATION AND FUTURE
WORK

The current implementation is written in Python as vec-
torized Numpy code. The system of differential equations
These equations of motion are a consistent set of coupled
first order ordinary differential equations.
is solved using the scipy.integrate module. One inte-
gration method is chosen and the equations are integrated
simultaneously with appropriate tolerances for adaptive step
size methods. All of the integration methods provided by
the module were tested and integrating the fields was uncon-
ditionally unstable.

Future work is to understand and address the problems
with integration.
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