

Plasma wakefield start to end acceleration simulations from photocathode to FEL with simulated density profiles

ALBERTO MAROCCHINO LNF-INFN Frascati Italy

on behalf of the Sparc_Lab collaboration

EuPRAXIA@SPARC_LAB

PLASMA ACCELATION

COMPAC

COST-EFFECTIVE

PLASMA ACCELATION

FEL SASE (this talk)

PLASMA COLLIDERS

Presentation Layout

a realistic start-to-end simulation to pilot a FEL with a plasma accelerated bunch

lour codes:

- PIC: ALaDyn and Architect
- M-HD: DUED and Pluto

Physics Mechanism

Coulomb repulsion

Physics Mechanism

Coulomb repulsion

Bubble generation :: positive charge

Physics Mechanism

- Coulomb repulsion
- Bubble generation :: positive charge
- Coulomb attraction :: bubble closure

Physics Mechanism

- Coulomb repulsion
- Bubble generation :: positive charge
- Coulomb attraction :: bubble closure
- the ion bubble generates a strong accelerating field

Plasma Acceleration Parameters

The Plasma dependance

the bubble length:

$$\lambda_p = 2\pi/\kappa_p = \sim 1/\sqrt{n_p}$$

The maximum electric field:

 $E_{\rm max} \sim \sqrt{n_p}$

(cm-3)	10 ¹⁶	1017
λρ	330µm	104µm
E _{max}	10 GV/m	30 GV/m
	our reference value	

ICAP 2018 KEY WEST, FL

Beam VS Laser Driven

Plasma Wakefield Schemes

- the driver could either be:
 - Laser Pulse
 - Charged bunch (electrons, positions, protons)
- Beam advantages:
 - Ionger depletion lengths
 - require no guiding
 - no driver-trailing bunch dephasing
 - higher energy transfer

external VS internal injection

EuPRAXIA@SPARC_LAB

- EuPRAXIA is an European project that will bridge the gap between successful proof-of-principle experiments and ultracompact accelerators for science
- EuPRAXIA@SPARC_LAB is the future Frascati-LNF facility for PWFA experiments a unique facility that is being built on 3-pillars:
 - large plasma accelerating gradients
 - acceleration with little trailing bunch depletion
 - FEL piloting with a plasma accelerated bunch

leveraging on established know-how:

- beam dynamics
- beam-plasma-codes

EuPRAXIA@SPARC_LAB conceptual design report arXiv and LNF Publishing

EuPRAXIA@SPARC_LAB

Parameter Choice - pillars		
▶ 1 GeV FEL	water window	
X-band	compact - research RF tech	
plasma acceleration	high gradient acceleration	
external injection	highly controllable and tunable	

EuPRAXIA@SPARC_LAB conceptual design report arXiv and LNF Publishing

PWFA Numerical Codes

ALaDyn full PIC code

bunch and background treated with macro-particles

> latest PWFA version: A. Marocchino et al. NIM-A 2018 DOI: 10.1016/j.nima.2018.02.068

bunch treated as a PIC background as a fluid

latest PWFA version: A. Marocchino et al. NIM-A 2015 DOI: 10.13140/RG.2.1.4072.9041 Sharing-Chatting via the most modern socials (please join!)

ICAP 2018 KEY WEST, FL

Bunch(es) are treated kinetically
background plasma as a fluid systematic scan
run time
no-Quasi Static Approximation

 $\begin{aligned} d_{t}\mathbf{p}_{\text{particle}} &= q(\mathbf{E} + c\boldsymbol{\beta}_{\text{particle}} \times \mathbf{B}) \\ d_{t}\mathbf{x}_{\text{particle}} &= \boldsymbol{\beta}_{\text{particle}} c \\ \partial_{t}\mathbf{n}_{e} &= -\nabla \cdot (\boldsymbol{\beta}_{e} c \, n_{e}) \\ \partial_{t}\mathbf{p}_{e} &= -\nabla \cdot (\mathbf{p}_{e} \otimes \boldsymbol{\beta}_{e} c) + q(\mathbf{E} + c\boldsymbol{\beta}_{e} \times \mathbf{B}) \\ \partial_{t}\mathbf{B} &= -\nabla \times \mathbf{E} \\ \partial_{t}\mathbf{E} &= c^{2}\nabla \times \mathbf{B} - q\mu_{0}c^{3} \left(n_{e}\boldsymbol{\beta}_{e} + n_{b}\boldsymbol{\beta}_{b}\right) \end{aligned}$

ICAP 2018 KEY WEST, FL

Architect VS ALaDyn

Comparison:

- ALaDyn VS Architect
- Different regimes
- good agreement up to nonlinear
- the disagreement occurs in the bubble closure (kinetic) region

F. Massimo - A. Marocchino J. Comp. Phys. 2016 DOI: 10.1016/j.jcp.2016.09.067

ICAP 2018 KEY WEST, FL

ALaDyn

an open source code

TNSA LWFA **PWFA** Roma Pisa Pisa 44. 1 Bologna Roma 4 44 Bologna

ICAP 2018 KEY WEST, FL

A MAROCCHINO

http://github.com/ALaDyn

- Plasma and Laser Wakefield acceleration
- Fully kinetic
- # Fully explicit
- Fluid background (in progress, Architect style)
- # Bunch Particles
 - Equal Charge
 - Weighted Option
- Ionisation modules: ADK and BSI
- # Envelope approximation
- **O** Fortran <-> *interfaced* <-> c++
- **O** python interfaced and *controllable*
- **O** 3D visualisation with VTK

from Photo-Injector to FEL

ICAP 2018 KEY WEST, FL

bunch generation

ICAP 2018 KEY WEST, FL

[kA]

X-band

it is difficult to tune the machine for the Driver and the trailing bunch at the same time. Our main focus in the trailing bunch.

ICAP 2018 KEY WEST, FL

plasma acceleration capillary

ICAP 2018 KEY WEST, FL

plasma acceleration capillary

experiments

MHD simulations

ICAP 2018 KEY WEST, FL

Hydro Code for Capillary Discharge

DUED

Lagrangian code

- HEDP oriented :: multi-physics
- well established experience and know-how by the group

Pluto

- Eulerian code
- Astrophysical oriented
- We implemented: new heat conduction model, new magnetic diffusion model (semi-implicit)

plasma acceleration

the driver exhibits a expanded head profile

ICAP 2018 KEY WEST, FL

plasma acceleration

- flattening of the accelerating field
- the driver exhibits a expanded head profile

ICAP 2018 Key West, FL

Free Electron Laser

SPARC_LAB FEL

FEL performance

▶ a_w=0.8

▶ λ=3 nm

- saturation length 30 m
- 9.76 10¹⁰ photons per shot
- ▶ Power :: 10⁸ Watt

SPARC_LAB Frascati Italy

ICAP 2018 KEY WEST, FL

plasma lenses

active focusing mechanism

experimental results

ICAP 2018 KEY WEST, FL

plasma acceleration capillary

experiments

bunch focusing with no quality depletion

MHD simulations (Pluto-Code)

- MHD simulations to calculate a realistic density profile
- We use as **background density input in Architect**

emittance ramp growth

ICAP 2018 KEY WEST, FL

emittance growth

2)

non-linear B-field :: aberration

ICAP 2018 KEY WEST, FL

plasma lenses

ICAP 2018 KEY WEST, FL

plasma lenses

passive focusing mechanism

Experiments VS simulations

quality degradation for long bunches and densities higher than bunch density

A. Marocchino et al. APL (2017) DOI: 10.1063/1.4999010

ICAP 2018 KEY WEST, FL

deceleration experiments

ionisation injection

- Injection position (Extraction) is a key parameter to control the beam quality
- off-axis particle cause of emittance growth

F. Mira - A. Marocchino et al. NIM-A 2018, DOI: 10.1016/j.nima.2018.01.019

ICAP 2018 KEY WEST, FL

CONCLUSIONS

- A realistic simulation from the Photo-injector to the FEL for the future EuPRAXIA@Sparc_Lab facility
- ▶ 1.1 GV/m + quality preservation + FEL seeding
- EuPRAXIA@SPARC_LAB an ongoing project!
- New results at SPARC_LAB from Plasma lenses to Plasma deceleration