Efficient modeling of Laser Wakefield Acceleration through the PIC code Smilei in CILEX project

Francesco Massimo Arnaud Beck, Julien Derouillat, Mickael Grech, Frédéric Pérez, Imen Zemzemi, Arnd Specka

Outline

- Motivations: CILEX
- Modeling Laser Wakefield Acceleration with Smilei
 - Envelope model, nonlinear wakefield benchmark
 - Field initialisation for relativistic species
- Case study: Laser Wakefield Acceleration with external injection
 - 2D comparisons
 - 1D comparisons
- Conclusions

Outline

- Motivations: CILEX
- Modeling Laser Wakefield Acceleration with Smilei
 - Envelope model, nonlinear wakefield benchmark
 - Field initialisation for relativistic species
- Case study: Laser Wakefield Acceleration with external injection
 - 2D comparisons
 - 1D comparisons
- Conclusions

Centre Interdisciplinaire de la Lumière Extrême (CILEX)

Multistage Électron acceleration

Outline

- Motivations: CILEX
- Modeling Laser Wakefield Acceleration with Smilei
 - Envelope model, nonlinear wakefield benchmark
 - Field initialisation for relativistic species
- Case study: Laser Wakefield Acceleration with external injection
 - 2D comparisons
 - 1D comparisons
- Conclusions

Code "Particle in Cell" (PIC) SMILEI

• Features

- Collaborative, open source
- Python Interface for Input/Output
- Advanced dynamic load balancing
- Parallelization with hybrid MPI/OpenMP
- Output OpenPMD, VTK
- Geometries 1D, 2D, 3D
- Ionization, Binary Collisions
- QED Radiation reaction,
- QED Photon emission

- Next features to be released
 - Vectorization
 - Interface with PICSAR library
 - Envelope model for the laser
 - Relativistic beam field initialisation
 - Azimuthal Fourier decomposition (X-R)

J. Derouillat, et al., Comput. Phys. Commun. 222, 351-373 (2018)

Modèle d'Enveloppe Complexe pour le Laser

B. Quesnel and P. Mora, Physics Review E 58, 3719 (1998)S. Sinigardi et al., ALaDyn v2017.1 zenodo (2017)

D. Terzani et al., submitted (2018)

Standard Particle in Cell (PIC) loop

C.K. Birdsall, A.B. Langdon, Plasma Physics Via Computer Simulation (1985)

PIC loop with Envelope ("Ponderomotive" PIC)

- S. Sinigardi et al., ALaDyn v2017.1 zenodo (2017)
- D. Terzani et al., submitted (2018)

Validation test: Nonlinear LWFA, Electron density

$$a_{0} = 5 , n_{0} = 3 \cdot 10^{18} \text{ cm}^{-3}, \qquad 8 \text{ ppc}, \Delta y = \Delta z = 3 \text{ c}/\omega_{0}$$

$$w_{0} = 12 \ \mu\text{m}, L_{FWHM} = 28 \text{ fs}$$

$$\sum_{k=1}^{200} \frac{1}{100} \sum_{k=1}^{100} \frac{1}{150} \sum_{k=1}^{100} \frac{1}{250} \sum_{k=1}^{100} \frac{1}{350} \sum_{k=1}^{100} \frac{1}{150} \sum_{k=1}^{100} \frac{1}{250} \sum_{k=1}^{100} \frac{1}{350} \sum_{k=1}^{100} \frac{1}{150} \sum_{k=1}^{100} \frac{1}{250} \sum_{k=1}^{100} \frac{1}{350} \sum_{k=1}^{100} \frac{1}{150} \sum_{k=1}^{100} \frac{1}{$$

Initialisation des Champs Électromagnétiques

Immobiles Species: Poisson's Equation

$$abla^2 \Phi = -
ho$$

Relativistic Species: "Relativistic" Poisson's Equation

$$\left(rac{1}{\gamma_0^2}\partial_x^2+
abla_\perp^2
ight)\Phi=-
ho_\perp$$

$$\mathbf{E}=\left(-rac{1}{\gamma_{0}^{2}}\partial_{x}\Phi,-\partial_{y}\Phi,-\partial_{z}\Phi
ight)$$

 $\mathbf{B} = rac{eta_0}{c} \mathbf{\hat{x}} imes \mathbf{E}$

Hypothesis: Negligible energy spread

If non-negligible energy spread: Repeat for each energy "slice"

 $http://www.maisondelasimulation.fr/smilei/relativistic_fields_initialization.html$

J.-L. Vay, Physics of Plasmas 15, 056701 (2008)

P. Londrillo, C. Gatti and M. Ferrario, Nucl. Instr. and Meth. A 740, 236-241 (2014)

F. Massimo, A. Marocchino and A. R. Rossi, Nucl. Instr. and Meth. A 829, 378-382 (2016)

Outline

- Motivations: CILEX
- Modeling Laser Wakefield Acceleration with Smilei
 - Envelope model, nonlinear wakefield benchmark
 - Field initialisation for relativistic species
- Case study: Laser Wakefield Acceleration with external injection
 - 2D comparisons
 - 1D comparisons
- Conclusions

LWFA with external injection of relativistic electron beam

 $\label{eq:plasma stage} Plasma \ stage \\ n_0 = 1.5 \cdot 10^{17} \ cm^{-3} \ (parabolic)$

Electron beam:

- $\mathbf{Q}=\mathbf{30}~\mathbf{pC}$
- $\mathrm{E}_{0}=150\,\,\mathrm{MeV}$
- $\sigma_{\mathrm{E}}/\mathrm{E}=0.05\%,$
- $\sigma_{\rm x} = 2 \ \mu m$
- $\sigma_{
 m yz} = 1.3~\mu{
 m m}$

 $\mathbf{\varepsilon}_{\mathrm{yz}} = 1 \,\,\mathrm{mm} ext{-mrad}$

Laser Pulse:

- $a_0 = 1.4$
- $\mathrm{w}_0 = 45 \; \mathrm{\mu m}$
- $m L_{FWHM} = 110~
 m fs$

8 ppc, $\Delta y = \Delta z = \lambda_0$ Standard Laser simulation $\Delta x = \lambda_0/32$ $\Delta t = 0.95 \Delta x$ Envelope simulation $\Delta x = 16\Delta x$ $\Delta t = 0.8\Delta x$

LWFA with external injection of relativistic electron beam

LWFA with external injection of relativistic electron beam

Conclusions

- Multi-stage Experiments are envisioned in the CILEX project
- New features have been developed in the SMILEI code
- Implemented of the field initialisation of relativistic beams
- Implemented a time-explicit 3D envelope model for the laser
- Envelope model + field initialisation suitable for external injection simulations
- Work in progress: start to end simulations of 2 stages

Acknowledgements

- Group GALOP
- Arnaud Beck, Imen Zemzemi, M. Khojoyan, A. Specka
- Developers of **Smilei**)
- Arnaud Beck, Imen Zemzemi
- Frédéric Pérez, Mickael Grech
- Julien Derouillat, Heithem Kallala, Mathieu Lobet 属

Developers of ALaDyn

- Alberto Marocchino
- Stefano Sinigardi,
- Davide Terzani

This work used computational resources of TGCC, CINES, through the allocation of resources 2018-A0010510062 granted by GENCI (Grand Equipement National de Calcul Intensif) and Grand Challenge "Irene" 2018 project gch0313 made by GENCI

For users and future developers:

Smilei) Training Workshop!

http://www.maisondelasimulation.fr/smilei/

Second Edition: February/March 2019

Additional slides

Gaussian Beam Laser: Vacuum diffraction, Plasma Wakefield 1D

Validation test: Relativistic Self-Focusing

Validation test: Nonlinear LWFA, beam loading

$${
m a}_0=5\;,\,{
m n}_0=3\,{
m \cdot}\,10^{18}\;{
m cm}^{-3},$$
 ${
m w}_0=12\;{
m \mu m},\,{
m L}_{
m FWHM}=28\;{
m fs}$

8 ppc, $\Delta y = \Delta z = 3 \ c/\omega_0$

Standard Laser simulation $\Delta x = 0.125 \ c/\omega_0$ $\Delta t = 0.124 \ c/\omega_0$

 $egin{aligned} {
m Envelope \ simulation}\ \Delta {
m x} &= 0.75 \,\,{
m c}/\omega_0\ \Delta {
m t} &= 0.675 \,\,{
m c}/\omega_0 \end{aligned}$

 $\frac{T_{Standard\ Laser}}{T_{Envelope}} = 20!$

Electromagnetic field initialization: Relativistic electron

