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Daniel Appelö, University of Colorado, Boulder, CO

Desmond P. Barber, DESY, Hamburg
Oleksii Beznosov and James A. Ellison UNM

October 22, 2018
ICAP18

1
Work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number

DE-SC0018008
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Outline 1

Topic: Estimating the polarization in high energy electron storage
rings

Motivation: getting polarization in high energy electron storage rings
like Future Circular Collider (FCC-ee) and proposed Circular Electron
Positron Collider (CEPC)
Ultimate questions:

1 Is polarization possible in FCC-ee or CEPC?
2 Are the Derbenev-Kondratenko formulas valid for FCC-ee and CEPC?

Model of electron bunch:
Mesoscopic approach via phase space densities: orbital density and
polarization density

Tool 1: Bloch equation for polarization density = System of linear
PDEs = three Fokker-Planck equations plus coupling terms

Tool 2: Numerical approach to Bloch equation

Motto: Neglect collective effects and Stern-Gerlach effect ⇒ orbital
density no serious issue

This talk: derivation of our numerical approach to compute the
polarization density

Details on numerical approach: see talk of O. Beznosov
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Outline 2

Mesoscopic approach (=phase space approach):
Upside: provides sufficient detail of bunch
Downside: curse of dimensionality = polarization density carries 7
independent variables

A “nice” Bloch equation suggests following numerical approach:
Use pairs of polar coordinates on phase space
Discretize polar angles by Fourier transform polar angles
Discretize radial variables by pseudospectral method (=collocation
method) MOVE for phase space discretization which is a spectral
method
Implicit/explicit time stepping scheme for time discretization

Numerical approach promises:
1 Large time steps
2 Few grid points
3 Parallel implementation

Nice Bloch equation obtained by analytic approximation of starting
Bloch equation ⇒
Tool 3: Get “average Bloch equation” by combining method of
averaging from perturbation theory with Chao’s eigenvector
approach to electron spin
Remark: Thus apply numerical approach to average Bloch equation!
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Mesoscopic description of electron bunch: orbital and
polarization densities (Cartesian coordinates)

Mesoscopic description of electron bunch by spin-1/2 Wigner
function ρ (=Stratonovich function):

ρ(t, z) =
1

2
(f(t, z)I2×2 + ~σ · ~η(t, z)) (1)

Remark 1: ~σ=3-vector of Pauli matrices ⇒ ρ is complex 2× 2-matrix
function of 7 arguments. Note: Arrow indicates 3-component object
Remark 2: z = (r, p) where r and p are position/momentum vectors
and t is time
Remark 3: ρ is not fully quantum but quasiclassical = classical plus
quantum corrections
Remark 4: f is orbital density and f = Tr[ρ] and

∫
f(t, z)dz = 1

Remark 5: ~η is polarization density and ~η = Tr[ρ~σ] and∫
~η(t, z)dz = ~P (t) where ~P (t) is polarization vector of bunch

Remark 6: Time evolution of ρ results in time evolution of f and ~η
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Mesoscopic description of electron bunch: orbital
Fokker-Planck equation (Cartesian coordinates)

Fokker-Planck equation for orbital density:

∂tf = LFP (t, z)f, (2)

Remark 1: Explicit form of Fokker-Planck operator LFP known
since pioneering QED work on quantum corrections to synchrotron
radiation in the early 1950s by Schwinger 2

Remark 2: LFP=linear second-order partial differential operator
entailing Lorentz force and orbital synchrotron radiation effects

Remark 3: Data in LFP commonly used to derive stochastic ODEs
for orbital motion in electron storage rings - see any exposition on
electron storage rings, e.g., Sands 3

Remark 4: If necessary LFP could be modified using recent QED
work on undulator fields and strong fields

Remark 5: As common, the miniscule Stern-Gerlach effect of spin on
orbit neglected in (2): would show up in (2) as term linear in ~η

2J. Schwinger, Proc. Nat. Acad. Sci.(Washington) 40:132 (1954).
3M. Sands, The physics of electron storage rings, SLAC-121, 1970
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Mesoscopic description of electron bunch: Full Bloch
equation for polarization density (Cartesian coordinates)

Full Bloch equation for polarization density:

∂t~η = LFP (t, z)~η +Ω(t, z)~η +G(t, z)~η

+~g(t, z)f + ~L(t, z)f (3)

Remark 1: Explicit form of G,~g and ~L derived by Derbenev and
Kondratenko in 1975 4

Orbital Fokker-Planck equation and full Bloch equation not fully
quantum but semiclassical

Remark 2: Ω carries Thomas-BMT spin-precession effect

Remark 3: G, ~g and ~L carry spin flips effects due to synchrotron
radiation

Remark 4: In particular G, ~g and ~L carry Sokolov-Ternov effect.
Note: G contains Baier-Katkov correction to Sokolov-Ternov effect

4Ya.S. Derbenev, A.M. Kondratenko, Relaxation and equilibrium state of electrons

in storage rings, Sov. Phys. Dokl., vol. 19, p. 438, 1975
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Mesoscopic description of electron bunch: Reduced Bloch
equation for polarization density (Cartesian coordinates)

Neglecting spin flips, full Bloch equation (3) simplifies to reduced
Bloch equation (RBE):

∂t~η = LFP (t, z)~η +Ω(t, z)~η (4)

Remark 1: The RBE takes into account effects of external fields and
of orbital synchrotron radiation effects ⇒ RBE sufficient for
computing depolarization time

Remark 2: RBE contains main numerical subtleties of the full Bloch
equation (all derivative terms belong to RBE)

Remark 3: RBE can be rederived from stochastic ODE (see below)
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Mesoscopic description of electron bunch: Reduced Bloch
equation for polarization density (Accelerator coordinates)

In the beam frame, i.e., in accelerator coordinates, RBE reads as

∂θ~ηY = (LY + LY,TBMT )~ηY (5)

where LY = −
6
∑

j=1

∂yj

(

(

A(θ) + ǫδA(θ)

)

y

)

j

+
1

2
ω(θ)∂2

y6
,

LY,TBMT~ηY = ΩY (θ, y)~ηY

Remark 1: A(θ) + ǫδA(θ)=6× 6 matrix encapsulating the Lorentz
force effects and the deterministic orbital synchrotron radiation
effects
Remark 2: A(θ)=Hamiltonian part of A(θ) + ǫδA(θ)
Remark 3: ΩY (θ, y)=skew-symmetric T-BMT matrix linear in y
Remark 4: RBE (5) is beam frame transform of lab frame RBE (2)
+ approximations
Remark 5: Quantity of interest= polarization vector of
bunch= ~P (θ) =

∫

~ηY (θ, y)dy
Remark 6: RBE (5) is what we want solved but not “nice” because
LY too complex for numerical computation!
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Approximating reduced Bloch equation for polarization
density (Accelerator coordinates)

Idea 1: Replace beam frame RBE (5) by “nice” RBE via
approximating LY analytically

Idea 2: Approximate LY analytically by using Method of Averaging
from ODE perturbation theory

Remark: Approximation of LY possible because coefficients of LY

are coefficients of ODEs for stochastic moments!

ODEs for first moment vector mY and covariance matrix KY of
solutions of orbital Fokker-Planck equation:

∂θfY = LY fY (6)

Remark 1: ODE for mY :

m′

Y = (A(θ) + ǫδA(θ))mY , (7)

Remark 2: ODE for KY :

K ′

Y = (A(θ) + ǫδA(θ))KY +KY (A(θ) + ǫδA(θ))T + ǫω(θ)e
6
eT
6

(8)

Remark 3: e6 = (0, 0, 0, 0, 0, 1)T
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Approximating reduced Bloch equation for polarization
density (Accelerator coordinates)

Before we analytically approximate RBE let us reconsider it!

System of Langevin equations underlying RBE is

Y ′ = (A(θ) + ǫδA(θ))Y +
√
ǫ
√

ω(θ)e6ξ(θ) (9)

~S′ = ΩY (θ, Y )~S (10)

Remark 1: ξ=version of white noise process

Remark 2: ~S=single-particle spin expectation value

Remark 3: (9) and (10) can be found in virtually every exposition on
spin in electron storage rings 5

Remark 4: (9) can be viewed as Ito stochastic differential equation
which is linear in narrow sense and thus defines Gaussian process Y
if Y (0) is Gaussian

Remark 5: (10) not linear but quadratic ⇒ averaging of ΩY is
future work (see however talk by O.Beznosov on 2 and 1 orbital
degrees of freedom)

5For example: D.P. Barber, K. Heinemann, H. Mais, G. Ripken, DESY-91-146,
1991
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Approximating reduced Bloch equation for polarization
density (Accelerator coordinates)

Remark 6: Spin-orbit joint probability density PY S = PY S(θ, y, ~s)
satisfies Fokker-Planck equation:

∂θPY S = LY PY S −
3
∑

j=1

∂sj

(

(

ΩY (θ, y)~s

)

j

PY S

)

(11)

Remark 7: PY S related to orbital density by

fY (θ, y) =

∫

R3

ds PY S(θ, y, ~s) (12)

Remark 8: Since ~s normalized ⇒ PY S supported on 2-sphere |~s| = 1
⇒ PY S(θ, y, ~s) proportional to δ(|~s| − 1)

Remark 9: Polarization density ~ηY corresponding to PY S :

~ηY (θ, y) =

∫

ds~s PY S(θ, y, ~s) (13)

Remark 10: RBE (5) follows from (11) by θ-differentiating (13)
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Approximating reduced Bloch equation for polarization
density (Accelerator coordinates)

Now let us find nice RBE, i.e., approximation of LY !

Recall ODEs for moments mY and KY

m′

Y = (A(θ) + ǫδA(θ))mY ,

K ′

Y = (A(θ) + ǫδA(θ))KY +KY (A(θ) + ǫδA(θ))T + ǫω(θ)e
6
eT
6

Recall: data in moment ODEs are coefficients of LY ⇒
approximating moment ODEs results in approximation of LY to get
“nice” RBE!

Thus apply method of averaging:

Step 1: Transform moment ODEs to standard form for averaging by
transforming moments mY and KY into mU and KU via

mY = X(θ)mU , KY = X(θ)KUX
T (θ) (14)

Remark: X is fundamental solution matrix of unperturbed (ǫ = 0)
part of ODE for mY :

X ′ = A(θ)X (15)
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Approximating reduced Bloch equation for polarization
density (Accelerator coordinates)

Step 2: Write down transformed moment ODEs:

m′

U = ǫD(θ)mU , (16)

K ′

U = ǫ(D(θ)KU +KUDT (θ)) + ǫE(θ) (17)

Remark 1:

D(θ) = X−1(θ)δA(θ)X(θ) , (18)

E(θ) = ω(θ)X−1(θ)e
6
eT
6
X−T (θ) (19)

Remark 2: Thus LY transforms into LU where coefficients of LU

are D and E hence:

LU = −ǫ
6
∑

j=1

∂vj
(D(θ)v)j +

ǫ

2

6
∑

i,j=1

(E(θ))ij∂vi
∂vj

(20)
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Approximating reduced Bloch equation for polarization
density (Accelerator coordinates)

Step 3: Average ODEs for mU and KU and denote their solutions
by mV and KV :

m′

V = ǫD̄mV , (21)

K ′

V = ǫ(D̄KV +KV D̄T ) + ǫĒ (22)

Remark 1: bar denotes θ-averaging, i.e., operation

limT→∞(1/T )
∫ T

0
dθ · · ·

Remark 2: For physically reasonable lattices, A guarantees that each
fundamental matrix X is quasiperiodic function ⇒ D̄ and Ē exist

Remark 3: D and E are approximated by D̄ and Ē hence LU is
approximated by

LV = −ǫ
6
∑

j=1

∂vj
(D̄v)j +

ǫ

2

6
∑

i,j=1

Ēij∂vi
∂vj

(23)

Appelö, Barber, Beznosov, Ellison, Heinemann
Spin dynamics in modern electron storage rings: Computational and theoretical



Approximating reduced Bloch equation for polarization
density (Accelerator coordinates)

With LV and X the evolution equation for spin-orbit probability
density PV S = PV S(θ, v, ~s) is Fokker-Planck equation:

∂θPV S = LV PV S

−
3
∑

j=1

∂sj

(

(

ΩY (θ,X(θ)v)~s

)

j

PV S

)

(24)

Polarization density ~ηV corresponding to PV S is defined by

~ηV (θ, v) =

∫

ds~s PV S(θ, v, ~s) (25)

Thus RBE is

∂θ~ηV = (LV + LV,TBMT )~ηV (26)
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Approximating reduced Bloch equation for polarization
density (Accelerator coordinates)

Remark: By averaging theory |mU (θ)−mV (θ)| ≤ C1(T )ǫ and
|KU (θ) −KV (θ)| ≤ C2(T )ǫ for 0 ≤ θ ≤ T/ǫ where T is a constant
and ǫ sufficiently small

Lets complete finding “nice” RBE!

Step 4: Use freedom in choice of fundamental matrix X to to get
simple form of LV

Remark:

X(θ) = M(θ)C (27)

where C is arbitrary invertible 6× 6 matrix and M is principal
solution matrix, i.e., M ′ = A(θ)M,M(0) = I.

To construct C we emulate Chao’s approach to spin physics in
electron storage rings and use the eigenvectors of M(2π)

We assume:
Unperturbed orbital motion is stable, i.e., M(2π) is diagonalizable
and its eigenvalues lie on unit circle of complex plane
Orbital tunes non-resonant
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Approximating reduced Bloch equation for polarization
density (Accelerator coordinates)

We thus construct C as real matrix using real and imaginary parts of
eigenvectors in its columns and using that M(2π) is symplectic
(since A(θ) is a Hamiltonian matrix).

Thus D̄ has block diagonal form and Ē has diagonal form:

D̄ =





DI 02×2 02×2

02×2 DII 02×2

02×2 02×2 DIII



 , (28)

Dα =

(

aα bα
−bα aα

)

, (α = I, II, III) (29)

and Ē = diag(EI , EI , EII , EII , EIII , EIII) with aα ≤ 0 and
EI , EII , EIII ≥ 0
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Approximating reduced Bloch equation for polarization
density (Accelerator coordinates)

Remark 1: All three degrees of freedom are uncoupled in LV :

LV = LV,I + LV,II + LV,III (30)

Remark 2: Each LV,α is an operator in one degree of freedom and is
determined by Dα and Eα (α = I, II, III)
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Approximating reduced Bloch equation for polarization
density (Accelerator coordinates)

Now: nice feature of ~ηV helpful for finding appropriate numerical
phase space domain for ~ηV .

Orbital probability density fV corresponding to PV S defined by

fV (θ, v) =

∫
dsPV S(θ, v, ~s) (31)

Thus

|~ηV (θ, v)| = |

∫
ds~sPV S(θ, v, s)| ≤

∫
ds|~sPV S(θ, v, s)|

=

∫
ds|~s|PV S(θ, v, s) =

∫
dsPV S(θ, v, s) = fV (θ, v) (32)

Thus numerical phase space domain for ~ηV can be identified with
numerical phase space domain for fV
Numerical phase space domain for fV is easy to find since we
generally use exact expressions of fV , e.g., the one for orbital
equilibrium.
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Sketch of numerical approach

Starting point is RBE in accelerator coordinates:

∂θ~ηY = (LY + LY,TBMT )~ηY (33)

Averaged RBE is much simpler:

∂θ~ηV = (LV + LV,TBMT )~ηV (34)

3 pairs (rα, ϕα) of polar coordinates for v1, ..., v6

Fourier expansion of ~ηV results in ~ηk(θ, r)

Discretize r by pseudospectral method using Chebychev grid

Gives large linear first-order ODEs in θ with very special structure
thanks to method of averaging and Chao eigen formalism

Discretize ODE system by implicit/explicit θ-stepping scheme

For details see talk by O. Beznosov in Fiesta Key at 11.45am
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