Genetic Algorithm Enhanced by Machine Learning for Dynamic Aperture Optimization

Yongjun Li

Brookhaven National Laboratory

13th ICAP Conference, Key West, 10/20/2018

Outline

- Existing DA optimizations: Local vs. Global
- Motivation of using ML in population-based algorithms
- Feasibility of ML in DA optimization
- Implementation of ML in MOGA
- An example NSLS-II storage ring
- Summary

Local optimization

• Simplex, Conjugate gradient minimization (using Lagrange multiplier if constraints exist).

• Pros:

- Easy to implement
- Fast
- Cons:
 - Single objective, combining weighted multiple objectives
 - Trapping in local minimums
 - Single solution

Global optimization

 Population-based optimization: genetic algorithm and particle swarm (Borland, Yang, Huang, Jiao, Qiang, et. al.)

• Pros:

- Multiple objectives and constraints (non-dominated sorting)
- Global minimum / completed Pareto front
- Cons:
 - (Not so) difficult to implement
 - More computation resource needed
 - Slow (one of our motivations: Can we improve it?)

Motivation of using ML in GA

- GA has been proved useful in linear/nonlinear lattice
- No priori reason why GA needs intervention. But all these creations in our planet become possible only after billions of years of evolutions. Evolution (learning curve) is too slow!
 - Large search range => multiple generation + large population
 - Accumulated big data is not fully re-used and analyzed: By data mining, can we find some clues associated with beam dynamics?
- External intervention during evolution is very common

Feasibility of ML in DA optimization

• ML: learning from data to recognize **unknown** patterns:

<u>Given (x, y), to generalize a hypothesis y = f(x)</u>

- DA optimization is **NOT** a typical ML problem
 - Given a lattice configuration, DA is a known function
 - There are no existing DA data before optimization

BUT...

Feasibility of ML in DA optimization

- There are patterns between DA and lattice configuration
- A large data pool is generated when using population based optimization
- With ML, patterns might be able to be recognized from the data
- Applying recognized pattern to boost the evolution

Implementation of ML in MOGA

- 1. Initialize population randomly
- 2. Follow normal MOGA (cross-over and mutation) till all individuals satisfy constraints
- 3. Classify candidates into different clusters (N=100) using K-means algorithm
- 4. Compare the **average fitness** to find out a few best (n=3) clusters (elite clusters)
- (Optional) Divide population of elite cluster into training group (95%) and testing group (5%), use supervised learning KNN algorithm to check if the learning model can predict the test group behavior.
- 6. Re-populate some amount (fixed or dynamically) of new population within the narrow searching space of these elite clusters, then to replace the same amount of candidates from the original population **<u>randomly</u>**.
- 7. Carry out cross-over, mutation and non-dominated sorting to next generation.
- 8. Repeat 3-8

Schematic illustration of ML in GA (1)

two features (inputs): x1 and x2

Without considering the target function (DA)

Schematic illustration of ML in GA (2)

Unsupervised learning: Classify based on their distance in the Euclidean space

K-means algorithm (Lloyd's algorithm)

Schematic illustration of ML in GA (3)

Supervised learning: Label elite clusters based on their average fitness

Weighted fitness:

$$F = \sum_{m=1}^{M} w_m f_m(x_n)$$

 $w_m = 1
ightarrow$ average fitness

Instead of reaching an uniform crowding in the Pareto front, a more practical or "of physics" distribution can be obtained.

Schematic illustration of ML in GA (4)

Manual intervention

Supervised learning: Repopulate more potentially competitive candidates to replace randomly selected candidates

How much original candidates should be replaced?

- 1. Static ratio
- 2. Dynamic ratio

ML techniques

Unsupervised learning in **classification**

Grouping candidates into clusters based on their features (lattice settings)

K-means: Lloyd algorithm Supervised learning in **repopulation** Supervised learning in **replacement**

Repopulating new potentially good candidates based on the average fitnesses (dynamic aperture, measure of nonlinearity) Adjusting the amount of replaced candidates based on accuracy of prediction

KNN: K-nearest neighboring algorithm

"similarity", "discrepancy", are quantitatively represented by the Euclidean distance in N-dimension space

An example: NSLS-II ring

Choosing optimization objectives

- Optimization objectives:
 - Tracking-based DA and Touschek lifetime (Borland)
 - Tracking-based on- and off-momentum DA (Yang)
 - Analytical nonlinear driving terms (OPAL, Li)
 - Square matrix method => new action-angle variables (Yu) => regular motion through tracking

Knobs and objectives

Free knobs:

6 families of harmonic sextupoles

Objectives:

5 particles dJ/J for multiple turns tracking

Constraints:

5 particles can survive in tracking

Li Hua Yu, Analysis of nonlinear dynamics by square matrix method, Phys. Rev. Accel. Beams 20, 034001
 Michael Borland, Private communication

Faster convergency with ML in MOGA

Evolution of elite ranges

Data mining on Pareto front

Relative distances between two islands

- Solutions are not unique (more sext knobs than needed?)
- Solutions are clustered into isolated islands
- Volumes of islands are different (Robustness of solution?)
- These islands might compose a structure (plane, curve?)

Comparison of two solutions

Table: Two well separated islands

Some discussions

- Randomly replacement after repopulation
 - Maintain the **diversity** to achieve global optimization
- Supervised learning fails to predict the testing candidates
 - Strong nonlinearity: candidates have similar features, but different dynamic behavior
 - Robustness of solution, tight specification on magnet imperfections

Can DA cross 1/3 resonance

1/3 resonance

Experimental observations

Displace beam with different methods to observe resonance trapping

Courtesy Weixing Cheng

Summary

- GA can be enhanced by ML technique in DA optimization
 - Fast convergency
 - Generating much more qualified solutions
 - Distribution of qualified solution might have some physics interpretation
 - Method itself is general for other population-based optimizer

Acknowledgements

- Coauthors: Weixing Cheng, Li Hua Yu and Robert Rainer
- Fruitful discussion with Dr. Michael Borland, Dr. Yipeng Sun, Dr. Xiaobiao Huang, and Prof. Alexander Wu Chao
- Many NSLS-II colleagues' support and help
- ICAP'18 scientific committee