

Northern Illinois University

Normal form approach to and nonlinear optics analysis of the IOTA ring

Béla Erdélyi

ICAP 2018, Key West October 20-24, 2018

2

Outline

- Key concepts:
 - Integrability: Hamiltonians and Symplectic Maps
 - (Birkhoff) Normal Form
- The **relation between** integrability and normal form
- Integrable Hamiltonians of interest:
 - Polynomial potentials
 - Non-polynomial potential: IOTA
- Normal Form applied to IOTA: its computation, limitations and some results

Mathematical Model of Periodic Accelerators

Integrability

A (time-periodic) Hamiltonian (vector field) X_H is called completely integrable if, for any fixed time, there are sufficiently many (half the phase space dimensionality) functionally independent analytical functions f_i in involution (Poisson commuting).

$$\{f_i, f_j\} = 0, \qquad i, j = 1, ..., n.$$

A symplectic map \mathcal{M} is called completely integrable if there are sufficiently many (half the phase space dimensionality) functionally independent analytical invariants f_i in involution (Poisson commuting).

$$f_i \circ \mathcal{M} = f_i, \qquad i = 1, \dots, n.$$

Hamiltonian and Map Integrability Relationship

The one-turn map of a time-periodic integrable Hamiltonian H is an integrable symplectic map \mathcal{M} .

If a symplectic map \mathcal{M} is integrable, then it is the oneturn map of a time-periodic integrable Hamiltonian H. Normal Form

Hamiltonian Picture: Action-Angle Variables

$$H(\boldsymbol{q},\boldsymbol{p}) \mapsto K(\boldsymbol{J}), \ J_i = \oint p_i \mathrm{d}q_i, \ w_i = \frac{\partial K}{\partial J_i}t$$

Map Picture: Special Symplectic Change of Variables

$$\mathcal{M} = \mathcal{L} + \mathcal{H} \mapsto \mathcal{N}_{\text{such that}} \hat{\mathcal{L}} \circ \mathcal{N} = \mathcal{N} \circ \hat{\mathcal{L}}$$
$$\hat{\mathcal{L}} - \text{real symplectic Jordan canonical form of } \mathcal{L}$$

Convergence of the Normalizing Transformation

There exists a real-analytic, symplectic Normal Form transformation if and only if the Hamiltonian/Symplectic Map is integrable.

H. Ito (1997)

$$\mathcal{M} = \mathcal{A} \circ \mathcal{N} \circ \mathcal{A}^{-1}$$

 $\begin{aligned} \mathcal{N} &- \text{normal form of } \mathcal{M} \\ \mathcal{A} &- \text{normalizing transformation} \\ f_i \circ \mathcal{A} &- \text{invariants of } \mathcal{N} \end{aligned}$

Hamiltonians of Interest

$$H(x, a, y, b, \delta; s) = -\sqrt{(1 + H) = \frac{1}{2}(p_x^2 + p_y^2) + V(x, y)} a_y(x, y, s))^2 - a_s(x, y, s) + \delta$$
Polynomial
$$V(x, y) = V_{\min}(x, y) + \dots + V_{\max}(x, y)$$
Non-Polynomial
$$H = \frac{1}{2}(p_x^2 + p_y^2) + V_{\min}(x, y)$$

$$H = \frac{1}{2}(p_x^2 + p_y^2) + V_{\max}(x, y)$$
Bertrand-Darboux: the potential must be separable in *elliptic coordinates* (or polar, or parabolic, or Cartesian)

NIU

Integrable Polynomial Potentials & The Laplacian

 $A \ list \ of \ all \ integrable \ 2D \ homogeneous \ polynomial \ potentials$

• with a polynomial first integral linear in the momenta

$$V_k = (x^2 + y^2)^{k/2}, \quad k = \text{even.}$$

• with a polynomial first integral quadratic in the momenta

$$V_k = \frac{1}{r} \left[\left(\frac{r+x}{2} \right)^{k+1} + (-1)^k \left(\frac{r-x}{2} \right)^{k+1} \right], \quad V_k = Ax^k + By^k.$$

• with a polynomial first integral quartic in the momenta

$$V_3 = x^3 + \frac{3}{16}xy^2$$
, $V_3 = x^3 + \frac{1}{2}xy^2 + \frac{\sqrt{3}i}{18}y^3$, $V_4 = x^4 + \frac{3}{4}x^2y^2 + \frac{1}{8}y^4$.

No one has discovered any polynomial first integral which is *genuinely* quintic or higher orders in the momenta. It is still an open problem whether or not there exist such polynomial first integrals.

 $\Delta V \neq 0$

Except quadrupole

Integrable Non-Polynomial Potentials: IOTA

$$H = \frac{p_1^2 + p_2^2}{2} + \frac{q_1^2 + q_2^2}{2} + \frac{f_2(\xi) + g_2(\eta)}{\xi^2 - \eta^2}$$

$$(\xi, \eta) = \left(\frac{\sqrt{(q_1 + c)^2 + q_2^2} + \sqrt{(q_1 - c)^2 + q_2^2}}{2c}, \frac{\sqrt{(q_1 + c)^2 + q_2^2} - \sqrt{(q_1 - c)^2 + q_2^2}}{2c}\right)$$

$$f_2(\xi) = -\xi\sqrt{\xi^2 - 1}(d + t\cosh^{-1}(\xi)) \quad g_2(\eta) = -\eta\sqrt{1 - \eta^2}(b + t\cos^{-1}(\eta))$$

$$d = 0 \quad b = -\pi t/2$$

$$V(r, \varphi) = -\frac{t}{c^2} \left(r^2 \cos(2\varphi) + \frac{2}{3c^2}r^4 \cos(4\varphi) + \frac{8}{15c^4}r^6 \cos(6\varphi) + ...\right)$$

$$\Delta V = 0$$

Nonlinear Dynamics of (Near-) Integrable Accelerators: IOTA

A new class of accelerators:

- *Special nonlinear magnetic fields* to spread out the circulating particles' oscillations
- The induced collective effects *damp any potential instabilities* (conservative relaxation is the beam's immune system)
- Challenge is to *maintain orbit stability* while this is happening
- *Impose (near-) integrability,* which implies absence of resonances and hence chaos
- Push the *intensity frontier* of beam physics

The IOTA Nonlinear Magnet

DA Methods for Map Extraction and Normal Form

(Symplectic) Integrators Destroy Integrability

Lobatto3, Lobatto4 and Lobatto5 at same time steps

Depends on:

- Time step
- Order
- Method

Strengths and Limitations of Normal Form Analysis of IOTA

- Amplitude Dependent Tune Shifts
- **Amplitude Dependent Chromaticities**
- (:)(:)**Resonance Strengths and Widths**
- (\cdot) **High-Order Matching**
- Any numerical integrator will break integrability 3
- Approximating the nearly-integrable system by an integrable one (\mathbf{r}) using the normal form, in general will lead to a slightly different Hamiltonian system
- Slow convergence due to the non-polynomial potential (:-)
- Paradoxical: in principle, normal form should work best for IOTA (::) (uniform convergence), but in practice it is somewhat limited (slow convergence), allowing comparison of expansion coefficients of different cases and small-to-medium amplitude analysis

Taylor approximation of mid-plane B_y component

Taylor approximation of B_y component of the non-linear potential and it's deviation from the analytical model. From top left to bottom right Taylor series of order: 4, 8, 10, 14, 18, 30.

NIU

Taylor approximation of transverse field (magnet middle)

Solid line shows the level of 1% relative error

Integrated Field Error (%)

NIU

The Four Study Cases

Non-linear magnet types:

- Continuous: the number of non-linear longitudinal slices is 1000. No drifts.
- 2. Split: the geometry of the real magnet (18 slices). Magnet includes drifts.

Lattices:

- 1. Continuous: Non-linear magnet + kick matrix.
- 2. Split: Non-linear magnet + kick matrix.

Observation point is the IOTA injection

- 3. 2-Continuous: Two non-linear magnets in the IOTA ring.
- 4. 2-Split: Two non-linear magnets in the IOTA ring.

Results: Tunes

Blue – split magnet: maximal tune spread in X ~0.06; Y ~0.06

Red – continuous magnet: maximal tune spread in X ~0.03; Y ~0.12

Results: Chromaticities (H & V)

i.i.i
NIU

1	0.2617014558063252	0	00	00	0
2	-9.501058154667085	1	00	00	1
3	1431.974081436545	2	20	00	0
4	-5779.199946597837	2	00	20	0
5	<mark>38.44651165214852</mark>	2	00	00	2
6	2514.591360537211	3	20	00	1
7	-232287.3985768651	3	00	20	1
8	-612.4426449070812	3	00	00	3
9	10005243.38413168	4	40	00	0
10	-345163280.5689275	4	20	20	0
11	250015609.9222542	4	00	40	0
12	-116624.4818519582	4	20	00	2
13	-415915030.3996868	4	00	20	2
14	<mark>218923.8178066820</mark>	4	00	00	4
15	-17618539.87187787	5	40	00	1
16	-667401322667.9651	5	20	20	1
17	138359658721.3394	5	00	40	1
18	791633.9439375501	5	2 0	00	3
19	-1096403897439.739	5	00	20	3
20	11390970.70547216	5	00	00	<mark>5</mark>

1 0.8739656666948553	0	00000
2 <mark>-8.017422621468725</mark>	1	00001
3 -5779.199946597853	2	20000
4 5816.704163812616	2	00200
5 <mark>74.99183048522569</mark>	2	00 00 2
6 -232287.3985768599	3	20001
7 64313.90358739401	3	00201
8 <mark>-3138.602002283135</mark>	3	00 00 3
9 -172581640.2844621	4	40000
10 500031219.8445172	4	20200
11 -216502513.8884833	4	00400
12 -415915030.3996801	4	20002
13 -201602774.0703870	4	00202
14 <mark>-175681.1251752207</mark>	4	00004
15 -333700661333.9794	5	40001
16 276719317442.7849	5	20201
17 <mark>134406798131.9375</mark>	5	00401
18 <mark>-1096403897439.712</mark>	5	20003
19 <mark>-548773117164.5134</mark>	5	00203
20 - <mark>49364641.60627148</mark>	5	00 00 5

Results: Resonance Strengths

Order 14 Matching and Tracking

Summary and Conclusions

- Integrable Hamiltonians and Symplectic Maps are in one-to-one correspondence; map picture advantageous for complicated systems
- Normal From transformations converge uniformly
- For the IOTA nonlinear potential convergence is slow, in practice limiting the domain of applicability of normal forms
- Within their domain of applicability, normal forms show significant strengths in nonlinear phase space topology mapping and dynamics analysis:
 - Amplitude- and parameter-dependent tune shifts, spreads, footprints
 - Resonance strengths and widths
 - High order beam matching