

TMCI & Higher-Harmonic RF Cavities in electron-storage rings

Marco Venturini

Lawrence Berkeley National Laboratory

ICAP 2018, Key West, October 20, 2018

Goal: Revisit TMCI theory

- Conventional mode-analysis for TMCI applies to <u>linear</u> single-particle longitudinal motion
- HHCs → motion in RF bucket is (highly) <u>non-linear</u>
- How should the theory be modified?

The new machine allows for narrow-aperture undulators

Under consideration: **Delta-undulator**

- *Cu* vacuum chambers with NEG coating
- Aside: characterization of RW properties of NEG is an important topic in its own right

Vacuum chamber samples for NEG coating R&D

Resistive Wall as a major, if not the dominant, source of transverse impedance

Adopt familiar monolayer, infinite thickness, round pipe, DC conductivity RW impedance model:

Strong dependence on chamber radius

$$Z_y(k) = \frac{\operatorname{sign}(k) - i L}{\sqrt{|k|}} \sqrt{\frac{2}{\pi c \sigma_c}},$$

Focus on:

- RW as the sole source of impedance
- Single bunch
- Vanishing chromaticities

The `classical' Transverse-Mode Coupling Instability (TMCI)

The instability happens

when the oscillation frequencies of the two modes merge 6

Mode-analysis accurately predicts the onset of the instability

Enter the harmonic (aka Landau) RF cavities (intended for bunch lengthening)

Main RF cavity only

- Quadratic RF potential
- Linear long. motion
- Synch. oscill. freq ω_{s0}

Main + 3rd Harmonic Cavity

- Quartic RF potential
- Non-linear long. motion

•
$$\omega_s(r) \propto r$$

8

Landau not doing his job ... (?)

Macroparticle simulations:

- beam always unstable (w/o radiation damping)
- growth rate higher compared to case w/o HHCs (everything else being equal)

Elegant simulations

Limited (and not all consistent) literature

- Y. Chin, et al.: (Part. Accel. 1985)
 - Mode analysis. BB Resonator Z model. Zero chromaticities
 - HHC non-linearity treated by perturbation theory
 - > In fully nonlinear regime motion always unstable (conjecture)
- S. Krinksy: (Tech Note 2005)
 - Macroparticle simulations. RW Z. Zero chromaticities
 - Current threshold w/ HHCs is lower but there is a threshold
- Cullinan, et al.: (PRAB 2016)
 - Macro-particle simulations. RW Z. Finite chromaticities. Multibunches
 - HHCs stabilize motion

Toward a mode-analysis theory with HHCs

- 1. Avoid orthogonal polynomial basis to represent radial components of modes
 - Use step-wise representation on a grid
- 2. Be careful about the singular nature of the secular equation

Taking care of the singularity (remember Landau)

regular integral equation

w/o HHCs

• Eigen-functions are regular functions. Finite-dim approximation OK

$$[\Delta\hat{\Omega} - m)R_m(\rho) + i\hat{I}_0 e^{-\rho^2/2} \sum_{m'=-\infty}^{\infty} \int_0^\infty R_{m'}(\rho')\mathcal{G}_{m,m'}(\rho,\rho')\rho'd\rho' = 0$$

w/ HHCs

singular integral equation

• Eigen-functions may be generalized (distribution) functions. Finite-dim approx. not OK

$$(\Delta \hat{\Omega} - m\rho) R_m(\rho) + i \hat{I} e^{-h_1 \rho^4} \sum_{m'=-\infty}^{\infty} \int_0^\infty R_{m'}(\rho') \mathcal{G}_{m,m'}(\rho,\rho') \rho'^2 d\rho' = 0,$$

Change of unknown: $R_m(\rho) \to S_m(\rho) = (\Delta \hat{\Omega} - m\rho) R_m(\rho) e^{h_1 \rho^4}$

Discretize this!

$$S_m(\rho) + i\hat{I}\sum_{m'=-\infty}^{\infty} \int_0^\infty \frac{S_{m'}(\rho')e^{-h_1\rho'^4}}{\Delta\hat{\Omega} - m'\rho'} \mathcal{G}_{m,m'}(\rho,\rho')\rho'^2 d\rho' = 0.$$
 Im $\Delta\hat{\Omega} > 0$

12

Numerical solution of regularized Eq. suggests $\sim I_b^6$ scaling of instability threshold

$$\hat{I} = \frac{Nr_c c}{\pi^{5/2} \gamma \langle \nu_s \rangle b^3 \sqrt{c\sigma_c \sigma_z}} \frac{\beta_y L_u}{2\pi}$$
avg. synchr. tune over bunch

At any current there always exists a root with $Im \Delta \hat{\Omega} > 0$ \rightarrow Motion always unstable

Im
$$\Delta \hat{\Omega} = (2^{5/3} \hat{I})^6$$

Conjecture based on numerical result. Uniqueness?

Reality check: macroparticle simulations confirm I_b^6 scaling

The take-home practical formula: stability with *vs*. without HHCs

Radiation damping accounted for

15

Threshold w/ HHCs Threshold w/o HHCs $\sqrt{\frac{1}{N_c}} \sim 1.15 \times N_{c0} \left(\frac{T_0}{\tau_y \nu_{s0}}\right)^{1/6} \left(\frac{\sigma_{z0}}{\sigma_z}\right)^{1/3} \\
\sim 0.52 \qquad \sim \left(\frac{1}{4}\right)^{1/3} = 0.62 \text{ ALS-U numbers}$

 $N_c \simeq 0.4 \times N_{c0}$ HHCs cut instability threshold by half \circledast ... but we should still be OK $\textcircled{\odot}$

The intuitive picture

The beam as a set of nested shells in longitudinal phase space

The rigid-dipole mode (m=0) couples with head-tail mode (m=-1) at arbitrarily low current

Increasing no. of shells does not extrapolate well to the continuum limit ...

...confirming the value of the regularizing transformation

Summary

New light-source storage rings narrow chambers

• Large RW transverse impedance

Higher-Harmonics Cavities (HHCs) are a fixture

• Bunch lengthening to reduce scattering effects

> Developed theory for effect of HHCs on TMCI

- Regularize integral secular equation for accurate numerical work
- Vanishing chromaticity + RW-dominated impedance
 HHCs degrade transverse beam stability
 - But finite chromaticity will help (not discussed in this talk)