PARTICLE-IN-CELL SIMULATION OF A BUNCHED ELECTRONS BEAM ACCELERATION IN A TE113 CYLINDRICAL CAVITY AFFECTED BY A STATIC INHOMOGENEOUS MAGNETIC FIELD

Eduardo A. Orozco

### Department of Physics Universidad Industrial de Santander Colombia

13th International Computational Accelerator Physics Conference

Key West, Florida, USA

2018





Universidad Industrial de Santander







#### NUMERICAL METHOD

RESULTS

CONCLUSIONS





#### Spatial AutoResonance Acceleration (SARA)

The electron acceleration in the autoresonance regime by a standing transversal electric microwave field in an inhomogeneous magnetostatic field



Figure 1: A physical model scheme.
1-cavity, 2-magnetic coils, 3-microwave port,
4-electric field profile (particular case of *TE*<sub>113</sub> mode),
5- electrons gun.





Dugar-Zhabon, V. D. & Orozco, E. A. (2017). U.S. Patent No. 9,666,403. Washington, DC: U.S. Patent and Trademark Office.



SARA Electrons beam acceleration by a TE112 cyclindrical microwave field





Industrial de Santander

### Spatial AutoResonance Acceleration (SARA)

#### **Cyclotron frequency :**

$$\omega_{c}(z)/\omega = \gamma^{-1}B_{z}(0, z)/B_{0}$$
  
+ $\gamma^{-1}(E_{0}^{c}/B_{0}c)[1 - \gamma^{-2} + (v_{z}/c)^{2}]^{-1/2}$   
× $|sin(p\pi z/L_{c})|sin\varphi$ 

- $\omega$ : Microwave field frequency
- $\gamma$ : Lorentz factor
- $B_{z}(0, z)$ : Magnetic field value to obtain clasical resonance.
- $E_0^c$  : Electric field strength.
- С : Speed of light
- $\mathcal{V}_{Z}$ : Longitudinal velocity





- p: Index of TE<sub>11p</sub> mode
- $\varphi$  : Phase-shift
- $L_c$ : Length of the cavity
- Ζ. : Longitudinal coordinate of the electron

Dugar-Zhabon, V. D., & Orozco, E. A. (2009). Cyclotron spatial autoresonance acceleration model. Physical Review Special Topics-Accelerators and Beams, 12(4), 041301.







Table 1: Magnetic coil system parameters

| Coil | $R_i$ | $R_e$ | L <sub>b</sub> | J                      | Z.       |
|------|-------|-------|----------------|------------------------|----------|
| 1    | 6 cm  | 20 cm | 6 cm           | 1.39 A/mm <sup>2</sup> | -5.75 cm |
| 2    | 6 cm  | 20 cm | 7.5 cm         | $1.08 \text{ A/mm}^2$  | 8.25 cm  |
| 3    | 6 cm  | 20 cm | 6.9 cm         | $1.18 \text{A/mm}^2$   | 19.5 cm  |
| 4    | 6 cm  | 20 cm | 6.1 cm         | $2.07 \text{ A/mm}^2$  | 32 cm    |

#### **TE113 cylindrical mode**

Figure 5: The profile of the magnetostatic field in the y = 0 plane.



### **NUMERICAL METHOD**



(i) *First stage*: Calculation of the steady state for the microwave field before to inject the electrons beam, and (ii) *Second stage*: Self-consistent simulation of the bunched electrons beams in the SARA acceleration by the  $TE_{113}$  cylindrical microwave field,





Figure 3: Waveguide-resonant cavity cross section.

Figure 4: Electromagnetic PIC-algorithm.

 $\vec{E}^{sc} = \vec{E}^{hf} + \vec{E}^{sg} \qquad \qquad \vec{E} = \vec{E}^{sc} \text{ and } \vec{B} = \vec{B}^{sc} + \vec{B}^{s}$  $\vec{E}^{hf} = \text{microwave field} \qquad \qquad \vec{B}^{s} = \text{magnetostatic field}$  $\vec{E}^{sg} = \text{self-generated electric field}$ 





#### Universidad Industrial de Santander

#### **TE**113 **cylindrical mode**

frequency = 2.45 GHz  $r_c = 30 cm$   $L_c = 30 cm$ 

Table 2: Parameters of the simulations

|                        | case 1                 | case 2                 |
|------------------------|------------------------|------------------------|
| Beam parameters        |                        |                        |
| Electron Bunch Radius  | 0.5 cm                 | 0.5 cm                 |
| Electron concentration | $n_e = 10^8 \ cm^{-3}$ | $n_e = 10^9 \ cm^{-3}$ |
| Injection energy       | 30 keV                 | 32 keV                 |
| Simulation parameters  |                        |                        |
| $\Delta x$             | 0.07 cm                | 0.07 cm                |
| $\Delta y$             | 0.07 cm                | 0.07 cm                |
| $\Delta z$             | 0.3 cm                 | 0.3 cm                 |
| $\Delta t$             | 1.58 ps                | 1.58 ps                |
| PiC merging factor     | $2 \times 10^4$        | $2 \times 10^{5}$      |









Figure 6: Steady-state electric field distribution in (a) the cross section  $z = L_c/2$ , (b) the longitudinal plane y = 0 and (c) the longitudinal plane x = 0.



RESULTS





Figure 7: Time evolution of the phase-shift between the electrons transversal velocities and the right-hand circular polarized component of the electric microwave field.

Figure 8: Time evolution of the energy for the  $n_e = 10^8$  electrons bunched (red circles) and for the single particle approximation (green line).



case 1







Figure 9: Time evolution of the transversal ( $\beta_T = v_T/c$ ) and longitudinal ( $\beta_z = v_z/c$ ) velocities for the  $n_e = 10^8$ electrons bunched.



RESULTS



30



Figure 10: Time evolution of the phase-shift between the electrons transversal velocities and the right-hand circular polarized component of the electric microwave field for the  $n_e = 10^9 \ cm^{-3}$  electrons bunched.

Figure 11: Time evolution of the energy for the  $n_e = 10^9$  electrons bunched.



RESULTS



case 2



Figure 12: Time evolution of the transversal ( $\beta_T = v_T/c$ ) and longitudinal ( $\beta_z = v_z/c$ ) velocities for the  $n_e = 10^9$  electrons bunched.









Figure 13: Numerical predictions of the energy spectrum for the electrons impacting on the cavity wall,  $z_{wall} = L_c$ , for the  $n_e = 10^8$  electrons bunched and for the  $n_e = 10^9$  electrons bunched.







Electrons bunched can be accelerated up to energies of 250 keV in spatial autoresonance acceleration conditions by using a cyclindrical TE113 mode

For the  $n_e = 10^8 cm^{-3}$  electrons bunched there is not present serious defocalization effect.

For the  $n_e = 10^9 \text{ cm}^{-3}$  electrons bunched, the self-generated electric field spread the bunch in longitudinal direction, which affect the acceleration regime. However, this effect can be reduced by using a continuos electron beam in the injection process.





## THANK YOU VERY MUCH FOR YOUR ATTENTION





## **QUESTIONS...?**

