
Sparse grids Particle-in-Cell scheme for noise
reduction in beam simulations

Antoine Cerfon, Courant Institute NYU
with Lee Ricketson, Lawrence Livermore National Laboratory

ICAP’18, Key West, Florida

October 21, 2018



CURSE OF DIMENSIONALITY VS CURSE OF NOISE
I Grid based algorithms scale badly with dimension:

Run time complexity κ ∼ h−d

∆t

Standard 2nd order scheme in space and time: ε ∼ ∆t2 , ε ∼ h2:
κ ∼ ε−

d+1
2 “Curse of dimensionality”

Particularly bad for beam dynamics described by the Vlasov
equation ∂f

∂t + v · ∇f +
q
m (E + v× B) · ∇vf = 0

with d = 6.
I Pure particle methods scale much better with dimension:

κ ∼ dN
∆t

Note: Ideal scaling, through Fast Multipole Method

I Penalty paid with particle methods: slow convergence of error
with N: ε ∼ N−1/2

For 2nd order in time scheme κ ∼ dε−5/2 “Curse of noise”



THE PIC APPROACH – THE WORST OF BOTH WORLDS?
I Ng: Total # of grid cells

ε ∼ ∆t2 , ε ∼ h2 , ε ∼
(

Np

Ng

)−1/2

(Standard PIC scheme)

I Let dr be the number of spatial dimensions

Ng ∼ h−dr ⇒
(

Np

Ng

)− 1
2

∼ N
− 1

2
p h−dr/2

I Complexity: κ ∼ d p
∆t ∼ dε(−

5
2 +dr/2)

Grid based Pure particle PIC
1D problem κ ∼ ε−3/2 κ ∼ ε−5/2 κ ∼ ε−3

2D problem κ ∼ ε−5/2 κ ∼ ε−5/2 κ ∼ ε−7/2

3D problem κ ∼ ε−7/2 κ ∼ ε−5/2 κ ∼ ε−4



IMPROVING PIC
Bottom line:

I Grid based solvers scale best for 1-D and 2-D problems
I Pure particle based solvers scale best for 2-D and 3-D problems
I PIC always scale worse because of

I Slow-converging statistical error: “Curse of noise”
I Exponential dependence of κ on dimension: “Curse of

dimensionality” (Although dimension reduced from d to dr)

BUT
I Many advantages of PIC

I Relative ease of implementation
I Easier boundary conditions than in grid based codes
I Well-suited for massive parallelization
I Existence of many well established, successful solvers

Can one improve PIC by reducing both the grid
based error and the noise?



SPARSE GRIDS COMBINATION TECHNIQUE
I Exact formula for the error from bilinear interpolation with

discretization sizes hx and hy:

ε := un(x, y)− uE(x, y) = C1(hx)h2
x + C2(hy)h2

y + C3(hx, hy)h2
xh2

y

un(x, y) =
∑

i+j=n+1

ui,j(x, y)−
∑

i+j=n

ui,j(x, y)



ERROR CANCELLATION IN THE COMBINATION

TECHNIQUE

un(x, y) =
∑

i+j=n+1

ui,j(x, y)−
∑

i+j=n

ui,j(x, y)

ε =���
��:0

C1(hx)h2
x + C1(hn)h2

n

+ C2(hy)h2
y + C3(hx, hy)h2

xh2
y

ε =���
��:0

C2(hy)h2
y + C2(hn)h2

n

+ C1(hx)h2
x + C3(hx, hy)h2

xh2
y



ERROR AND COMPLEXITY ANALYSIS

un(x, y) =
∑

i+j=n+1

ui,j(x, y)−
∑

i+j=n

ui,j(x, y)

I The only surviving terms are O(h2
n);there are 2n + 1 such terms:

ε = O(nh2
n) = O(h2

n| log hn|)

For full grid, ε = O(h2
n)

I Solve on 2n + 1 grids, each with O(h−1
n ) grid points :

κ = O(h−1
n | log hn|)

For full grid, κ = O(h−2
n )

I Sparse: κ ∼ ε−1/2| log ε|2 Full: κ ∼ ε−1



BREAKING THE CURSE OF DIMENSIONALITY

Example: Bilinear interpolation of
sin(2πx) cos(3πy) at 50 random points in
[−1, 1]× [−1, 1]

I Same idea applicable in higher dimension
e.g in 3D: combination along a diagonal plane

Sparse: κ ∼ ε−1/2| log ε|2(d−1) Full: κ ∼ ε−d/2

Much weaker dependence on dimension
I Applicable to higher order schemes
I Schemes with adaptive refinement have been proposed
I Limitations

I Requires structured mesh
I Requires more smoothness of function to be represented /

Alignment with grid→we will return to this



SPARSE GRIDS FOR PIC

I Clear that sparse grids can be benefitial for the field parts of the
PIC scheme (solve and interpolation)

I What about particle part of PIC?
I Error of approximating true particle density ρ with approximate

density % using hat functions

ρ(xk)− %(xk) = C1(hx)h2
x + C2(hy)h2

y + C3(hx, hy)h2
xh2

y + ξk,

with ξk r. v. with E[ξk] = 0 and Var(ξk) ≈ 4Qρ(xk)/9 · 1/(hxhyNp)

I Blue terms are sources of grid based error. Same form as
interpolation formula⇒ good for sparse grids

I Yellow term is source of statistical noise. Using the Schwarz
equality, one can show that sparse grids have the same benefitial
effect on statistical noise1

1L.F. Ricketson and A.J. Cerfon, Plasma Phys. Control. Fusion 59 024002 (2017)



SPARSE GRIDS FOR PIC – INTUITIVE ADVANTAGES
I Statistical noise in PIC depends on the # of particles per cell
I Sparse grids have larger cells⇒ Sparse PIC has more particles

per cell than standard PIC for a given overall # of particles

⇒ Sparse PIC has less numerical noise than standard PIC, for a
given overall # of particles

⇒ Sparse PIC has lower memory requirements than standard
PIC, for a given target accuracy

I The grids at the extremes of the grid hierarchy are the only ones
to resolve the DeBye length, and do so only in one direction

I Sparse grids require far less memory to store than their full-grid
counterparts

⇒ An entire sparse spatial grid easily fits on a single compute
node

⇒Much less communication and load-balancing overhead



SPARSE GRIDS RESULTS
2D plasma oscillations

Np ∼ 109 Np ∼ 107, Sparse PIC Np ∼ 107

3D plasma oscillations



SPARSE GRIDS ACCURACY AND MEMORY USAGE

I Sparse grids often lead to a significant reduction in
computational time

I Sparse grids always lead to a significant reduction in memory
usage



CURRENT LIMITS OF SPARSE PIC
Illustration with the diocotron instability

I Sparse PIC: 7.8×105 particles, 1024×1024 grid, 225 seconds
I Regular PIC: 2.6×106 particles,256×256 grid, 246 seconds
I Details of billows smeared out in sparse PIC



POLAR COORDINATES FOR DIOCHOTRON INSTABILITY



OPTIMIZED COORDINATES FOR SPARSE GRIDS

Idea: use inexpensive, low dimensional continuum equations or
inexpensive, high noise PIC simulation to construct optimized
coordinate system for sparse grids PIC



SUMMARY – FUTURE WORK
I Sparse grids can significantly decrease the grid based error and

the numerical noise in PIC simulations
I The noise reduction comes from the larger number of particles

per cell in sparse PIC than in a standard PIC scheme
I For certain test problems, we demonstrated gains in terms of

accuracy and major drops in memory requirements
For other problems, sparse PIC did not perform better than
standard PIC

I Sparse PIC is still in its infancy. We are exploring ways to make
it perform consistently better than standard PIC:

I Use higher order interpolation and higher order shape functions
to reduce the grid-based error

I Construct optimized coordinate systems which best align with
solution structure

I Combine sparse grids with adaptive mesh refinement
I Let us know if you would like to code a sparse PIC solver

tailored for your needs!


