

M. Frey, A. Adelmann :: SNF project 200021_159936 :: Paul Scherrer Institut

Computer Architecture Independent Adaptive Geometric Multigrid Solver for AMR-PIC

21/10/2018 :: ICAP'18

Thesis advisor: Prof. Dr. Klaus S. Kirch Thesis supervisor: Dr. Andreas Adelmann

- Motivation
- Adaptive Geometric Multigrid
- Benchmarks
- Conclusion

Goal: Understand Halo Creation and Evolution

- Halo particles become losses
 - \Rightarrow machine activation
 - \Rightarrow machine intensity limitation
- Large scale *N*-body problems of $\mathcal{O}(10^9...10^{10})$ particles coupled with Maxwell's equations
- Particle-In-Cell (PIC) models fine mesh of O(10⁸...10⁹) grid points

- Naive Meshing: Cartesian Uniform
 - Waste of memory in regions of void
 - Waste of computational power

Towards Exascale Computing

- Naive Meshing: Cartesian Uniform
 - Waste of memory in regions of void
 - Waste of computational power
- Adaptive Meshing:
 - Save memory
 - Save computational effort
 - Used in CFD, astrophysics, etc.
- Issue of state-of-the-art solvers:

Implementation is hardware specific (e.g. CPU, GPU)

- **OPAL:** physics (https://gitlab.psi.ch/OPAL/src/wikis/home)
- AMReX: grids, formerly: BoxLib (https://ccse.lbl.gov/AMReX)
- **Trilinos:** Amesos2, Belos, Ifpack2, MueLu, Tpetra (https://trilinos.org/)

Taken from https://www.cscs.ch/computers/piz-daint/

• Coordinate space discretized by grid

- Coordinate space discretized by grid
- Mark cell for refinement according to some criteria:
 - charge density per cell
 - potential gradient
 - potential magnitude
 - etc.

• Generate level 1

- Generate level 1
- Mark cell for refinement according to some criteria:
 - charge density per cell
 - potential gradient
 - potential magnitude
 - etc.

• Generate level 2

- Generate level 2
- Maximum level reached (user-defined)

Dan F. Martin and Keith L. Cartwright. Solving poisson's equation using adaptive mesh refinement. Technical Report UCB/ERL M96/66, Univ. Calif. Berkeley. 1996.

• Poisson's equation:

$$\Delta \phi(x, y, z) = -rac{
ho}{arepsilon_0} \ \phi(\infty) = 0$$

with charge density ρ , vacuum permittivity ε_0 and potential ϕ .

- **Difficulty:** Continuity conservation of ϕ !
- Solution: elliptic matching condition, i.e.
 Dirichlet + Neumann condition at coarse-fine interfaces

- Implemented fully in Trilinos with **2nd generation packages**, i.e.
 - Tpetra (matrix / vector data structure)
 - Ifpack2 (smoothers e.g. Gauss-Seidel, Jacobi)
 - MueLu, Amesos2, Belos (linear solvers)

• Implemented fully in Trilinos with **2nd generation packages**, i.e.

- Tpetra (matrix / vector data structure) \rightarrow Kokkos
- Ifpack2 (smoothers e.g. Gauss-Seidel, Jacobi)
- MueLu, Amesos2, Belos (linear solvers)
- Kokkos allows **portable code** between hardware architectures **without changing your code**!
 - GPU
 - OpenMP / PThreads / serial

• 8 CRS-matrices

(prolongation, restriction, (composite) Poisson, boundaries, ...)

• 4 vectors

(RHS, LHS, residual, error)

• **Restriction:** simple averaging (N = 4 in 2D, N = 8 in 3D)

• Prolongation: Trilinear interp. or piecewise const. interp

$$\begin{split} (\Delta\phi)_{i,j} &= \frac{f_{i+\frac{1}{2},j} - f_{i-\frac{1}{2},j}^{ave} + f_{i,j+\frac{1}{2}} - f_{i,j-\frac{1}{2}}}{h_c} \\ f_{i-\frac{1}{2},j}^{ave} &= \frac{1}{2} \left(f_{top} + f_{bottom} \right), \\ f_{i+\frac{1}{2},j} &= \frac{1}{h_c} \left(\phi_{i+1,j} - \phi_{i,j} \right), \\ f_{i,j+\frac{1}{2}} &= \frac{1}{h_c} \left(\phi_{i,j+1} - \phi_{i,j} \right), \\ f_{i,j-\frac{1}{2}} &= \frac{1}{h_c} \left(\phi_{i,j} - \phi_{i,j-1} \right) \end{split}$$

$$f_{top/bottom} = \frac{1}{h_f} \left(\phi_{top/bottom}^{int} - \phi_{top/bottom} \right)$$

$$\begin{split} (\Delta\phi)_{i,j} &= \frac{f_{i+\frac{1}{2},j} - f_{i-\frac{1}{2},j}^{ave} + f_{i,j+\frac{1}{2}} - f_{i,j-\frac{1}{2}}}{h_c} \\ f_{i-\frac{1}{2},j}^{ave} &= \frac{1}{2} \left(f_{top} + f_{bottom} \right), \\ f_{i+\frac{1}{2},j} &= \frac{1}{h_c} \left(\phi_{i+1,j} - \phi_{i,j} \right), \\ f_{i,j+\frac{1}{2}} &= \frac{1}{h_c} \left(\phi_{i,j+1} - \phi_{i,j} \right), \\ f_{i,j-\frac{1}{2}} &= \frac{1}{h_c} \left(\phi_{i,j} - \phi_{i,j-1} \right) \end{split}$$

$$f_{top/bottom} = \frac{1}{h_f} \left(\phi_{top/bottom}^{int} - \phi_{top/bottom} \right)$$

 \implies Lagrange interpolation

•

$$g(u,v) = \sum_{i,j=0}^{2} f(u_i,v_j)L_i(u)L_j(v)$$

with

$$L_{i}(x) = \frac{(x - x_{k})(x - x_{l})}{(x_{i} - x_{k})(x_{i} - x_{l})} \qquad (l \neq i \neq k \neq l)$$

Cells need to be uncovered! \implies 9 possible configurations

	-	H	⊢	-		
			F	_		
			E		•	
	E		E			
	┝	Н	┝	-		

20	21	22	23	24		20	21	22	23	24	ŀ								
15	16	17	18	19	1	15	16	17	18	19)								
10	11	12	13	14		10	11	12	13	14	ŀ								
5	6	7	8	9		5	6	7	8	9									
0	1	2	3	4		0	1	2	3	4									
bit pattern unsigned long											case								
0 (0 0	0 0	01	. 1	1	0 0	1 1	l 1	0 0	1	1	1 0	0	0	0	0	0	473′536	0
0 (0 0	0 0	0 0	0 (0	0 0	1 1	L 1	0 0	1	1	1 0	0	1	1	1	0	14′798	1
0 (0 0	0 0	0 0) 1	1	1 0	0 1	L 1	1 0	0	1	$1 \ 1$	0	0	0	0	0	236′768	2
0	$1 \ 1$	1 0	01	. 1	1	0 0	1 1	L 1	0 0	0	0	0 0	0	0	0	0	0	15'153'152	3
0 (0 0	0 0	11	. 1	0	0 1	1 1	L 0	01	1	1	0 0	0	0	0	0	0	947′072	4
0 (0 0	0 0	0 0	0 (0	0 1	1 1	L 0	01	1	1	0 0	1	1	1	0	0	29′596	5
0 (0 0	0 0	0 0	0 (0	0 0	0 1	L 1	10	0	1	11	0	0	1	1	1	7′399	6
0 (01	1 1	0 0) 1	1	10	0 1	L 1	10	0	0	0 0	0	0	0	0	0	7′576′576	7
1	11	0 0	1 1	. 1	0	0 1	1 1	L 0	0 0	0	0	0 0	0	0	0	0	0	30'306'304	8

M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, M. L. Norman, yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data, Astrophysical Journal, Supplement 192 (2011) 9.

22 / 28

Benchmark - Lineplots AMReX FMG vs. AGMG

- 10 bunches (each $\approx 3 \cdot 10^8$ particles)
- base grid: 576³
- max. grid: 24

 $(\rightarrow$ max. 13'824 cores on base level)

- #level of refinement: 2
- 100 solves

(move each particle randomly within [-0.001, 0.001] after every solve)

M. Frey, A. Adelmann

Solver ...

- works and gives good scalability (CPUs)
- runs on GPUs (EuroHack18: GPU Programming Hackathon)
- is hardware architecture independent
- is part of open-source beam dynamics code OPAL
- uses **structured aggregation** for bottom level linear system of equations solve (Sandia visit: 15th 19th Oct. 2018)

Wir schaffen Wissen - heute für morgen

Thanks to

A. Almgren (LBNL)
P. Arbenz (ETH)
A. Myers (LBNL)
W. Zhang (LBNL)
D. F. Martin (LBNL)
K. D. Devine (Sandia)
C. Siefert (Sandia)
L. Berger-Vergiat
(Sandia)

