Work in collaboration with D. Amorim, G. Arduini, H. Bartosik, H. Burkhardt, E. Benedetto, K. Li, A. Oeftiger, D. Quatraro, G. Rumolo, B. Salvant, C. Zannini (CERN: now or <) and A. Burov (FNAL)

and the second of the second second

CMS

Space charge and transverse instabilities at the CERN SPS and LHC

CERN Prévessir

Elias Métral

LHC 27 km

BE/ABP-HSC (Collective/Coherent Effects)

https://espace.cern.ch/be-dep-workspace/abp/HSC/SitePages/Home.aspx

Elias.Metral@cern.ch Tel.: 00 41 75 411 4809 http://emetral.web.cern.ch/emetral/

CERN Meyrin

ATIA

Abstract

- At the CERN accelerator complex, it seems that only the highest energy machine in the sequence, the LHC, with space charge (SC) parameter close to one, sees the predicted beneficial effect of SC on transverse coherent instabilities
- In the other circular machines of the LHC injector chain (PSB, PS and SPS), where the SC parameter is much bigger than one, SC does not seem to play a major (stabilising) role... maybe the opposite in the SPS...
- All the measurements and simulations performed so far in both the SPS and LHC will be reviewed and analyzed in detail

INTRODUCTION

 Operation with p⁺

 SPS
 25 GeV => 450 GeV

 LHC
 450 GeV => 7 (6.5) TeV

Operation with p⁺ SPS 25 GeV => 450 GeV LHC 450 GeV => 7 (6.5) TeV

SPS (ΔQ_{sc} / Q_s >> 1)

- Observation of a fast vertical single-bunch instability (with a travelling-wave pattern along the bunch) at injection, above a certain threshold (depending on slip factor)
- Several features are close to the ones from the predicted TMCI between modes - 2 and - 3 without SC (Q' ~ 0)

"Long-bunch" regime

Operation with p⁺ SPS 25 GeV => 450 GeV LHC 450 GeV => 7 (6.5) TeV

"Short-bunch" regime

SPS (ΔQ_{sc} / Q_s >> 1)

- Observation of a fast vertical single-bunch instability (with a travelling-wave pattern along the bunch) at injection, above a certain threshold (depending on slip factor)
- Several features are close to the ones from the predicted TMCI between modes - 2 and - 3 without SC (Q' ~ 0)

LHC ($\Delta Q_{sc} / Q_s \sim 1$)

- Predicted threshold for TMCI (modes - 1 and 0) at injection (Q' ~ 0) increased by SC
- Head-Tail instability with 1 node (Q' ~ 5) => Stabilized by SC below a certain energy

2 – PARTICLE MODEL FOR TMCI (Q' = 0) WITH SC AND/OR ReaD

 Results from Burov_2016 (using a ReaD only) and Chao-Chin-Blaskiewicz_2016 (using SC only) have been recovered and combined

Both SC and ReaD affect TMCI in a similar way and can suppress it

2 – MODE MODEL FOR TMCI (Q' = 0) WITH SC AND/OR ReaD

- "Short-bunch" regime (TMCI between 0 and 1) => LHC case
 - Both ReaD & SC are expected to be beneficial (as 2-part. model)
 - ReaD => Shifts mode 0 up
 - SC => Shifts mode 1 down

2 – MODE MODEL FOR TMCI (Q' = 0) WITH SC AND/OR ReaD

- "Long-bunch" regime (TMCI of high-order modes) => SPS case
 - Situation is more involved due to higher-order mode-coupling
 - ReaD => Modifies only mode 0 and not the others (where the main mode-coupling occurs) => ReaD is expected to have no effect for main coupling
 - SC => Modifies all the modes (except 0) => ?: main subject of this presentation...

CONTENTS

SPS

- 1) 1st observations with p⁺ in 2003 and simulation studies
- 2) 2nd simulation studies
- 3) New measurement campaign
- 4) Change of optics (Q26 => Q20) and new measurement and simulation studies
- 5) Currently: closer look to Q26 with new results from
 - Theory by A. Burov => New detrimental effect of SC (see "Convective Instabilities of Bunched Beams with SC": <u>https://arxiv.org/pdf/1807.04887.pdf</u>)
 - Simulation with SC by A. Oeftiger
 - (Simple) 2-mode approach
- 6) (Near) future: new measurement campaign planned

LHC

- 1) Simulation studies of the TMCI (Q' = 0) at injection
- 2) Measurement and simulation studies with Q' ~ 5

Conclusions

Appendix

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/2018

Linked to the interger part of the tune

Fast vertical single-bunch instability with p⁺ at the SPS injection in 2003

Synchrotron period \approx 7 ms

$$p = 26 \text{ GeV/c} \quad N_b \approx 1.2 \, 10^{11} \text{ p/b}$$

1 1

... and 1st conclusions

=> Measured picture and movie close to simulated ones (using first a Broad-Band resonator only)

But can we state that it is a TMCI?

The coupling of 2 Head-Tail modes (standing-wave patterns) generates a travelling-wave pattern...

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/2018

2nd simulation studies (B. Salvant)...

Headtail simulations
 MOSES calculations

Mode Spectrum of the horizontal coherent motion as a function of bunch current

=> TMCI between modes - 2 and - 3 is predicted (WITHOUT SC). Also using the full impedance model which was developed in //

2nd simulation studies (B. Salvant)...

Parameter Name	Symbol	Value	Unit
Beam momentum	p	26	${ m GeV}/c$
Revolution frequency	f_{rev}	43375.9	Hz
Momentum compaction factor	α_{cp}	$1.92 \ 10^{-3}$	
Betatron tune spread		0	
Synchrotron tune	Q_s	$3.24 \ 10^{-3}$	
Average beta function	$\langle \beta_x \rangle = \langle \beta_y \rangle$	40	m
Linear chromaticity	$\xi_x = \xi_y$	0	
r.m.s. bunch length	σ_z	0.21	m
Resonator shunt impedance	R_s	10	$M\Omega/m$
Resonator frequency	f_{res}	1	GHz
Resonator quality factor	Q	1	

Table B.3: SPS parameters for the LHC beam at injection used in *MOSES* calculations.

Parameter Name	Symbol	Value	Unit
Beam momentum	p	26	GeV/c
Revolution frequency	f_{rev}	43375.9	Hz
Momentum compaction factor	α_{cp}	$1.92 \ 10^{-3}$	
Circumference length	L	6911	m
Lorentz factor	γ	27.7286	
Betatron tunes	Q_x / Q_y	26.185 / 26.13	
Synchrotron tune	Q_s	$3.24 \ 10^{-3}$	
Average beta functions	$\langle \beta_x \rangle / \langle \beta_y \rangle$	40/40	m
Initial r.m.s. beam sizes	σ_x / σ_y	1.8 / 1.8	$\mathbf{m}\mathbf{m}$
Linear chromaticities	ξ_x / ξ_y	0 / 0	
Initial r.m.s. bunch length	σ_z	0.21	m
Initial r.m.s. longitudinal momentum spread	$\sigma_{\Delta p/p_0}$	$9.3 \ 10^{-4}$	
Cavity harmonic number	h	4620	
Resonator shunt impedance	R_s	10	$M\Omega/m$
Resonator frequency	f_{res}	1	GHz
Resonator quality factor	Q	1	
Initial kick amplitude		0.9	mm
Number of slices		500	
Number of macroparticles		10^{6}	
Longitudinal restoring force		linear	
Frozen wake field		yes	

Elias Métral, ICAP'18, Key West, Florida

Why do we observe "what looks like a TMCI (with a travelling-wave along the bunch)" whereas SC should suppress it (according to some past theoretical analyses => Pioneer work of M. Blaskiewicz in 1998 followed by other analyses by A. Burov et al.)?

- Why do we observe "what looks like a TMCI (with a travelling-wave along the bunch)" whereas SC should suppress it (according to some past theoretical analyses => Pioneer work of M. Blaskiewicz in 1998 followed by other analyses by A. Burov et al.)?
 - Can we observe the coupling of the (< 0 or > 0) modes?
 - How do measurements compare to HEADTAIL simulations?

1st SC simulations from D. Quatraro and G. Rumolo in 2010 using a 3rd order symplectic integrator for the equation of motion, taking into account non linear space charge forces coming from a Gaussian shaped bunch (<u>http://accelconf.web.cern.ch/accelconf/IPAC10/papers/tupd046.pdf</u>)

1st SC simulations from D. Quatraro and G. Rumolo in 2010 using a 3rd order symplectic integrator for the equation of motion, taking into account non linear space charge forces coming from a Gaussian shaped bunch (<u>http://accelconf.web.cern.ch/accelconf/IPAC10/papers/tupd046.pdf</u>)

Mode spectrum of the vertical coherent motion as a function of bunch current Measured with an SPS single bunch

Figure 6.26: Bunch population measured by the SPS BCT for various cycles, SPS parameters $\varepsilon_l = 0.16$ eV.s, $\sigma_t = 0.7$ ns, and $\xi_y \approx 0$ (left), simulated with *HEADTAIL* for $\varepsilon_l = 0.16$ eV.s, $\sigma_t = 0.5$ ns, and $\xi_y = 0$ (right). Low bunch currents lead to stable bunch motion (in green). In both simulations and measurements, two distinct unstable ranges (slow instability in blue and fast instability in red) are separated by a stable range of bunch population (in green). **B. Salvant**

As

 $T_s = \pi \tau^{sm}_{TMCL}$

- 1) SPS instability seemed to be relatively well described by TMCI using a Broad-Band resonator (without SC)
- and 2) in this case ("long-bunch" regime) a simple formula exists (recently checked by A. Burov & T. Zolkin with NHT Vlasov solver => "TMCI with Resonator Wakes" (https://arxiv.org/pdf/1806.07521.pdf))

$$N_{b,th} = \frac{4\pi^3 f_s Q_{y0} E \tau_b^2}{e c} \times \frac{f_r}{|Z_y|} \qquad N_{b,th} = \frac{8\pi Q_{y0} |\eta| \varepsilon_l}{e \beta^2 c} \times \frac{f_r}{|Z_y|}$$

- As
 - 1) SPS instability seemed to be relatively well described by TMCI using a Broad-Band resonator (without SC)
 - and 2) in this case ("long-bunch" regime) a simple formula exists (recently checked by A. Burov & T. Zolkin with NHT Vlasov solver => "TMCI with Resonator Wakes" (https://arxiv.org/pdf/1806.07521.pdf))

$$T_{s} = \pi \tau_{\text{TMCI}}^{\text{sm}} \qquad N_{b,th} = \frac{4\pi^{3} f_{s} Q_{y0} E \tau_{b}^{2}}{e c} \times \frac{f_{r}}{|Z_{y}|} \qquad N_{b,th} = \frac{8\pi Q_{y0} |\eta| \varepsilon_{l}}{e \beta^{2} c} \times \frac{f_{r}}{|Z_{y}|}$$

it was proposed to modify the optics to increase the slip factor => "Q20 optics" by H. Bartosik (with Y. Papaphilippou)

$$\eta = -\frac{df_{rev} / f_{rev}}{dp / p} = \alpha_p - \frac{1}{\gamma^2} = \frac{1}{\gamma_t^2} - \frac{1}{\gamma^2}$$

- Simple rough estimate of γ_t for machines made of simple FODO cells
 - Approximating the machine radius by the bending radius, yields

$$D_x \approx \frac{\rho}{Q_x^2}$$

Inserting this in the definition of α_p (and then expressing γ_t) yields

$$\gamma_t \approx Q_x$$

=> If one wants to modify γ_t , one should modify the horizontal tune

4th studies: Increasing the intensity threshold by

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/2018

 Good agreement also with HEADTAIL simulations from 2014 for different optics, with full impedance model but WITHOUT SC

Good agreement also between measurements (left) and HEADTAIL simulations (right) looking at different longitudinal emittances, with full impedance model but WITHOUT SC

Figure 4.21: Comparison of the vertical intra bunch motion between the SPS Head-Tail monitor measurement (left) and the corresponding HEADTAIL simulations (right). One case is shown for the Q26 optics and two cases for the Q20 optics, as indicated together with the beam parameters in the graphs.

Elias Métral, ICAP'18, Key West, Florida, US

 Good agreement also between measurements and pyHEADTAIL simulations WITH SC for Q20 (considering the Broad-Band resonator model)

- Good agreement also between measurements and pyHEADTAIL simulations WITH SC for Q20 (considering the Broad-Band resonator model) => Detailed analysis of the modes involved seems to reveal different modes at start of instability... on-going...
 - Without SC: azimuthal modes 2 & 3 with radial mode k = 0
 - With SC: azimuthal modes + 1 & + 2 with radial mode k = 1

- Good agreement also between measurements and pyHEADTAIL simulations WITH SC for Q20 (considering the Broad-Band resonator model) => Detailed analysis of the modes involved seems to reveal different modes at start of instability... on-going...
 - Without SC: azimuthal modes 2 & 3 with radial mode k = 0
 - With SC: azimuthal modes + 1 & + 2 with radial mode k = 1

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/2018

5th studies: closer look to Q26 case

$$q = \Delta Q_{x,y}^{\text{SC,spread}} / (2Q_s)$$

$$q |_{Q20} \approx 5 \ll 27 \approx q |_{Q26}$$

New theory from A. Burov: SC was recently found to be destabilising below TMCI without SC => "while the SC suppresses TMCI, it introduces saturating convective and absolute-convective instabilities, which could make the beam even less stable than without SC"

H. Bartosik et al.

Is SC responsible for this measured asymmetry between Head & Tail?

New simulation results from A. Oeftiger for Q26

New simulation results from A. Oeftiger for Q26

• Review of the 2-mode approach
• Without SC Sacherer

$$|Q_s + \Delta Q_{m+1}^{S,y} - \Delta Q_m^{S,y}| = 2 |\Delta Q_{m,m+1}^{S,y}| \Rightarrow Q_s \approx 2 |\Delta Q_{m,m+1}^{S,y}|$$

• Review of the 2-mode approach
• Without SC Sacherer

$$|Q_s + \Delta Q_{m+1}^{S,y} - \Delta Q_m^{S,y}| = 2 |\Delta Q_{m,m+1}^{S,y}| \Rightarrow Q_s \approx 2 |\Delta Q_{m,m+1}^{S,y}|$$

• With SC (in the very "long-bunch" regime, as done in the past)
Same result as before
 $\Delta Q_{m>s}^{y} \frac{\Delta Q_{sc}}{2Q_s} \approx -\frac{\Delta Q_{sc}}{2} + mQ_s \Rightarrow \Delta Q_{m+1}^{S,y} - \Delta Q_m^{S,y} = \Delta Q_{m+1}^y - \Delta Q_m^y - Q_s \approx 0$

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/2010

6th studies: new measurement campaign planned...

 To try and disentangle between the impedance effect and the space charge effect => Varying the space charge tune spread (by varying the transverse emittances), etc.

6th studies: new measurement campaign planned...

 To try and disentangle between the impedance effect and the space charge effect => Varying the space charge tune spread (by varying the transverse emittances), etc.

Conclusion for the SPS

- We are not there yet for the "full understanding" => But we should be close now: new simulations with SC and full impedance model should be done soon and compared to the new measurements planned...
- A solution was found in practice for this instability in the SPS by increasing the slip factor (i.e. going farther away from transition)

LHC

pyHEADTAIL SIMULATION WITH SC FOR (HL-) LHC TMCI (Q' = 0)

=> Using the real impedance model

No instability anymore with SC

A. Oeftiger

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/2018

pyHEADTAIL SIMULATION WITH SC FOR (HL-) LHC HEAD-TAIL INSTABILITY (Q' = 5)

=> Using the real impedance model

Impedance only

SC only

Impedance + SC

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/2018

A. Oeftiger

Impedance only

SC only

SC stabilizes the Head-Tail instability

Impedance + SC

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/2018

A. Oeftiger

 Studying the effect of energy during the ramp, which reduces the SC tune spread (by increasing the transverse emittances at injection energy), the instability re-appears at ~ 2 TeV...

- Studying the effect of energy during the ramp, which reduces the SC tune spread (by increasing the transverse emittances at injection energy), the instability re-appears at ~ 2 TeV...
- ... ~ 2 TeV is the energy at which the 1st transverse single-bunch instability was observed in the LHC during the 1st ramp performed in 2010 with neither Landau octupoles nor transverse damper (see

https://accelconf.web.cern.ch/accelconf/IPAC2011/papers/mops074.pdf

CONCLUSIONS

- Beneficial effect of SC in the LHC ("short-bunch" regime)
 - SC simulation with pyHEADTAIL (2.5D PIC code from A. Oeftiger) gives an explanation of 1st single-bunch Head-Tail instability observed in LHC during 1st ramp in 2010 with neither Landau octupoles nor transverse damper => Might be good to re-do a controlled experiment to check / confirm...
 - SC simulation also predicts that SC increases significantly the TMCI intensity threshold (Q' = 0) at (HL-) LHC injection => TMCI currently out of reach in LHC

CONCLUSIONS

Beneficial effect of SC in the LHC ("short-bunch" regime)

- SC simulation with pyHEADTAIL (2.5D PIC code from A. Oeftiger) gives an explanation of 1st single-bunch Head-Tail instability observed in LHC during 1st ramp in 2010 with neither Landau octupoles nor transverse damper => Might be good to re-do a controlled experiment to check / confirm...
- SC simulation also predicts that SC increases significantly the TMCI intensity threshold (Q' = 0) at (HL-) LHC injection => TMCI currently out of reach in LHC

Small? / detrimental? effect of SC in the SPS ("long-bunch" regime)

- Several past measurements quite close to case without SC
- The intensity threshold was increased considerably in practice by increasing the slip factor (based on theoretical analysis without SC) => Works very well:
 Q20 optics has replaced Q26 optics
- However, a recent theoretical analysis (from A. Burov) predicts a detrimental effect of SC (even below the TMCI intensity threshold without SC)
 - Confirmed by SC simulations with Q26 (from A. Oeftiger) and simple 2mode approach (same scaling as without SC, only Q_s-term reduced by SC)
 - To be looked at in more detail during a future measurement campaign...

APPENDIX

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/2018

2 – MODE MODEL FOR TMCI (Q' = 0) WITH SC AND/OR ReaD

Broad-Band impedance with neither SC nor ReaD

2 – MODE MODEL FOR TMCI (Q' = 0) WITH SC AND/OR ReaD

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/2018

2 – MODE MODEL FOR TMCI (Q' = 0) WITH SC AND/OR ReaD

SC ONLY (square-well air-bag, Blaskiewicz1998)

VLASOV SOLVER: GALACTIC WITH ReaD => Application to LHC and SPS assuming a Broad-Band impedance

- ~ LHC case (Q' = 0) No SC
- ~ SPS case (Q' = 0) No SC

Without / with ReaD (50 turns) in blue / red Without / with ReaD (50 turns) in blue / red

Fast instability of e^+ bunches in the SPS \Rightarrow Gareyte & Brandt in 1988 (BBU analysis)

Fast instability of e^+ bunches in the SPS \Rightarrow Gareyte & Brandt in 1988 (BBU analysis)

 Yokoya's BBU theory for linacs (many bunches): Cumulative Beam Breakup in Large-Scale Linacs, DESY 86-084, 1986 (<u>https://lib-extopc.kek.jp/preprints/PDF/1986/8609/8609117.pdf</u>)

$$x(s,t) = \frac{1}{2\sqrt{2\pi}} \sqrt{\frac{\gamma_0 k_0}{\gamma(s)k(s)}} \left(\frac{\Omega(s)}{t^3}\right)^{1/4} \Re \tilde{y}(0, -\varepsilon - i[\omega_0]) e^{-\varepsilon t - i[\omega_0]t + i\psi(s) + \sqrt{\Omega(s)t}}.$$
 (3.22)

For the initial condition (2.16) and (2.17), we get

$$X(s,t) = \frac{X_0}{2\sqrt{2\pi}} \sqrt{\frac{\gamma_0 k_0}{\gamma k}} (\Omega(s)t)^{1/4} \frac{t_b}{t} e^{-\varepsilon t + \sqrt{\Omega(s)t}} \left\{ \begin{bmatrix} (e^{\varepsilon t_b} - 1)^2 + 4e^{\varepsilon t_b} (\sin\frac{\omega_0 t_b}{2})^2 \end{bmatrix}^{-1/2} \\ 1 \end{bmatrix}$$
(3.24)

where the upper and lower part in the curly bracket correspond to (2.16) and (2.17), respec-

For instance, when every bunch is injected with the same offset X_0 without slope, (2.15) gives

$$y(0,p) = \frac{X_0 t_b}{1 - e^{-pt_b}}$$
 and $y'(0,p) = 0.$ (2.16)

If only the first bunch is displaced by X_0 and the others are on the axis, we have

$$y(0,p) = X_0 t_b$$
 and $y'(0,p) = 0.$ (2.17)

Fast instability of e^+ bunches in the SPS \Rightarrow Gareyte & Brandt in 1988 (BBU analysis)

- Extension of Yokoya's BBU theory to synchrotrons (1 bunch): D. Brandt, J. Gareyte, Fast Instability of Positron Bunches in the CERN SPS, CERN SPS/88-17 (AMS) (<u>http://accelconf.web.cern.ch/accelconf/e88/PDF/EPAC1988_0690.PDF</u>)
 - The long bunch is assumed to be made of many bunchlets so that the time between the bunchlets (t_b) is small compared to the decay time of the impedance and the oscillation period

For the initial condition (2.16) and (2.17), we get

$$X(s,t) = \frac{X_0}{2\sqrt{2\pi}} \sqrt{\frac{\gamma_0 k_0}{\gamma k}} (\Omega(s)t)^{1/4} \frac{t_b}{t} e^{-\varepsilon t + \sqrt{\Omega(s)t}} \left\{ \frac{\left[(e^{\varepsilon t_h} - 1)^2 + 4e^{\varepsilon t_h} (\sin \frac{\omega_0 t_h}{2})^2\right]^{-1/2}}{1} \right\}$$
(3.24)

where the upper and lower part in the curly bracket correspond to (2.16) and (2.17), respec-

Fast instability of e⁺ bunches in the SPS

$$\Rightarrow$$
 Gareyte & Brandt in 1988 (BBU analysis)
• Used in the past also for the PS at transition: R. Cappi et al., Beam
Break-Up Instability in the CERN PS at Transition (https://www.cem.el/acceleant/wwwww.cem.el/acceleant/www.cem.el/acce

$$\Delta t = T_0 \times \frac{\omega_u \left(E / e \tau_b^2 \right)}{4 N_b e \beta c} \times \frac{\omega_r}{R_{r,u} Q_r}, \qquad (3)$$

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/201

Elias Métral, ICAP'18, Key West, Florida, USA, 20-24/10/2018

2nd simulation studies (B. Salvant)...

 By the way, why should/could a Broad-Band resonator model be a good first approximation?

2nd simulation studies (B. Salvant)...

4th studies: Increasing the intensity threshold by increasing the slip factor (distance to transition)

 By the way, the simple formula giving the instability rise-time well above TMCI threshold (which was checked with MOSES and HEADTAIL, within the same factor 2 as before => See http://www-linux.gsi.de/~boine/CERN-GSI-2009/benedetto.ppt) can be written as

$$\tau_{\text{TMCI}}^{\text{sm}} = \frac{T_s}{\pi} \times \frac{N_{b,th}}{N_b}$$

4th studies: Increasing the intensity threshold by increasing the slip factor (distance to transition)
Good agreement also with past pyHEADTAIL simulations using a frozen SC model for Q20 (considering the Broad-Band resonator model)

SC simulations for both LHC (left) and SPS (right)

Set-up of space charge with PIC:

- 3×10^6 macro-particles
- smooth approximation (constant beta functions around machine)
- 200 space charge kicks along ring
- simulate for 20000 turns
- 1 impedance kick per turn with 500 slices
- 2.5D space charge PIC: 100 transverse grids equally distributed over $6\sigma_z$ along bunch line charge density to solve free-space Poisson eq.
 - \rightarrow transverse grid size fixed to 10 or $20\sigma_{x,y}$ total width (128 × 128 cells)

✓ cross-check with 3D model: same qualitative behaviour with growing instability towards end of bunch at 9×10^6 macro-particles and 300 longitudinal mesh points (2.5D PIC resolution ×3)!

A. Oeftiger

2 – PARTICLE MODEL FOR TMCI (Q' = 0) WITH SC AND/OR ReaD

Reactive transverse damper

- Following the same formalism as Chin-Chao-Blaskiewicz_2016 (PRAB 19, 014201 (2016): http://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.19.014201): "Two particle model for studying the effects of space-charge force on strong head-tail instabilities"
- Adding a reactive transverse damper

Chin-Chao-Blaskiewicz_2016: WF + SC with constant wake and zero chromaticity

$$y_1'' + \left(\frac{\omega_\beta}{c}\right)^2 y_1 = K\left(y_1 - y_2\right) + W y_2$$

$$y_2'' + \left(\frac{\omega_\beta}{c}\right)^2 y_2 = K\left(y_2 - y_1\right)$$

Wake Field (WF)

Discussed here: WF + SC + TD

$$y_{1}'' + \left(\frac{\omega_{\beta}}{c}\right)^{2} y_{1} = K\left(y_{1} - y_{2}\right) + W y_{2} + g_{TD}\left(y_{1} + y_{2}\right)$$

$$y_{2}'' + \left(\frac{\omega_{\beta}}{c}\right)^{2} y_{2} = K\left(y_{2} - y_{1}\right) + g_{TD}\left(y_{1} + y_{2}\right)$$

Transverse Damper (TD)

Space Charge (SC)

 Results from Burov_2016 (using a ReaD only) and Chao-Chin-Blaskiewicz_2016 (using SC only) have been recovered and combined

Both SC and ReaD affect TMCI in a similar way and can suppress it

 Similar result as Burov_2016 in his paper "Efficiency of feedbacks for suppression of transverse instabilities of bunched beams" (<u>https://arxiv.org/abs/1605.06198</u>), where he considered the case of a reactive damper (on Fig. 1) but without space charge

Note: Different notations used

Fig. 1: Two-particle growth rate versus gain g and constant wake value w for reactive damper and zero chromaticity. All the values are in the units of the inverse synchrotron period 1/T.

=> To be able to compare to Burov_2016, we need to divide by

- 2 the WF axis
- π the SC + TD_reactive axis

Fig. 1: Two-particle growth rate versus gain g and constant wake value w for reactive damper and zero chromaticity. All the values are in the units of the inverse synchrotron period 1/T.

GALACTIC: GArnier-LAclare Coherent Transverse Instabilities Code

- Uses a decomposition on the low-intensity eigenvectors (as proposed by Garnier-Laclare in 1987) => "Water-bag" longitudinal distribution (for now)
- Effect of transverse damper recently added (to study destabilizing effect of resistive transverse damper) => IPAC18 paper (http://accelconf.web.cern.ch/AccelConf/ipac2018/papers/thpaf048.pdf)
- Remark: 2 other codes (Vlasov solvers) including the transverse damper were developed in the recent years
 - A. Burov developed a Nested Head-Tail Vlasov Solver (NHTVS) with transverse damper in 2014
 - N. Mounet solved Sacherer integral equation with transverse damper, using a decomposition over Laguerre polynomials of the radial functions (DELPHI code, 2015)

* Sacherer integral equation was also solved using a decomposition over Laguerre polynomials of the radial functions by Besnier in 1974 and Y.H. Chin in 1985 in the code MOSES

Without transverse damper