

MUON BACKGROUND STUDIES FOR BEAM DUMP OPERATION OF THE K12 BEAM LINE AT CERN

M. Rosenthal, D. Banerjee, J. Bernhard, M. Brugger, N. Charitonidis, M. van Dijk, B. Döbrich, L. Gatignon, A. Gerbershagen, E. Montbarbon, B. Rae, T. Spadaro

21.10.2018, ICAP'18, Key West, Florida

Introduction

- The NA62 experiment is located in experimental cavern ECN3 in the North Area of CERN
 - Goal: Measurement of branching ratio $K^+ \rightarrow \pi^+ \nu \bar{\nu} ~ \mathcal{O}(10^{-10})$ with a precision < 10%
 - 400 GeV/c protons of SPS interact with Be-target to create required kaon beam
- Physics Beyond Colliders Study at CERN:
 - Explore the opportunities offered by the CERN complex, complimentary to high-energy colliders
 - Various proposals are investigated, e.g. the operation of NA62 in beam dump mode
- NA62 Beam Dump:
 - Production of hypothetical dark sector particle by primary protons dumped on massive copper/iron block
 - Observe decay products, e.g. muons, in NA62 experimental setup
 - Simulation and mitigation of muon background crucial.

North Area of CERN

• Secondary hadron beam (75 GeV/c) in K12

The K12 Beam Line

- 400 GeV/c protons impinge on 40 cm Beryllium target
 - Shower of secondary particles (p, π, K, e ...)
 - $\pi \& K$ decays introduce μ component
- Beam line optics optimized for transfer of positively charged particles of 75 GeV/c
 - Q1-Q3: acceptance (x:±1.5 mrad, y: ±2.7 mrad)
 - Momentum selection by massive dump collimator TAX
 - 75 GeV/c fraction vertically shifted and selected by 10 mm holes in TAX
 - 400 GeV/c protons dumped on TAX
 - Electrons removed by 4 mm tungsten absorber
- Muon Sweeping Elements
 - B3: Horizontally deflecting bends with field-free region for secondary beam
 - SCR1: Toroidal field for muon deflection

The K12 Beam Line & NA62

- Full beam line implemented in G4beamline simulation framework based on Geant4
- Field map for each magnet of the beam line
 - Also including magnetic field in iron yokes

CERN EN ENGINEERING DEPARTMENT

Simplified model of the detector geometry of NA62

The K12 Beam Line & NA62

- Full beam line implemented in G4beamline simulation framework based on Geant4
- Field map for each magnet of the beam line
 - Also including magnetic field in iron yokes

Particle	NA62 TDR (MHz)	G4Beamline (MHz)
Pions	525	547
Protons	173	308
Kaons	45	45
	Target KTAG GTK	LAV STRAW CHOD MUV1,2 RICH WUV3 VTI Vacuum Vacuum RICH SAC

100

Decay Region

150

• Simplified model of the detector geometry of NA62

-2 -

Z [m]

LK

250

200

Muon Flux Simulation in Beam Dump Mode

Counts • Changes for Beam dump simulation: Counts 10° Be-target moved out & TAX "closed" to dump protons 10^{2} Main sources of muon background 10 200 Remaining material budget in target region 10 -200 10^{4} Processes within the TAX -40 10^{3} -1000 E00 -800 -600 -400 Be-target 10° 400 GeV/c protons high-energy muons 10strongly suppressed 200 300 350 400 150 25050 100p (GeV/c) (10⁹ incident protons)

- Two different simulation methods investigated:
 - 1. Sampling from particle distribution scored after TAX
 - More statistics without simulating processes in the TAX
 - Limited statistics for high momenta

- Two different simulation methods investigated:
 - 1. Sampling from particle distribution scored after TAX
 - More statistics without simulating processes in the TAX
 - Limited statistics for high momenta
 - 2. Parametrization of muon distribution scored after TAX

- Two different simulation methods investigated:
 - 1. Sampling from particle distribution scored after TAX
 - More statistics without simulating processes in the TAX
 - Limited statistics for high momenta
 - 2. Parametrization of muon distribution scored after TAX
 - Sampling from analytical PDF with individual weights
 - Normalizing to same amount of incident protons
- Comparison of both methods shows very good agreement
- Method 2 allows for:
 - Estimation of high-energy muon distribution
 - Less fluctuations due to normalization only after tracking

Benchmarking Results in Dump Mode

- Muon simulation compared to data samples recorded in beam dump operation
 - Events triggered by charged particle hit in CHOD
 - Track reconstructed by four straw chamber stations
 - Time-associated hit in muon veto MUV3 requested
- Simulated muon spectra depend on muon origin: $\ensuremath{\underbrace{\$}}$
 - Example: positively charged muons at z=180 m
 - Large component at about 75 GeV/c for muons from upstream decays
 - Lower momenta and larger radii $r = \sqrt{x^2 + y^2}$ for muons produced in TAX

Benchmarking Results in Dump Mode (II)

- Good qualitative agreement:
 - Both components observed in data at expected location

- Quantitatively:
 - Measured Data downscaled by factor five
 - Ratio of both simulated contributions different

Mitigation of Muon Background

• Simulated muon flux scored in muon veto MUV3 as nominal reference

- In nominal setting:
 - Large component close to beam axis
 - Rate difference by 3 orders of magnitude between small and large momenta
- Aim: optimize configuration of magnetic fields to mitigate muons from detector volume

Variation of Magnets of First Achromat

- Beam line optics changes:
 - Optimize quadrupoles in front of TAX for 400 GeV/c
 - Disable quadrupoles behind TAX
- Optimize muon sweeping in vicinity of muon prod.
 - Disable first two bends to avoid vertical displacement of proton beam
 - Scan field strengths of last two bends to find best setting

Variation of Magnets of First Achromat

Conclusion

- Successfully implemented a G4beamline model of the K12 beam line at CERN
- Parametrization of muon distribution for estimation of high-momenta muons
 - Significant reduction of computing time achieved, enabling benchmarking and optimization studies
- Qualitative agreement of muon distributions between measurement and simulation observed
 - Quantitative discrepancies under investigation
- First studies on muon background mitigation in NA62 beam dump mode performed
 - Reduction by factor four at MUV3 detector observed in simulations

Benchmarking of Nominal Configuration

- Simulated beam scored before fiducial volume of NA62 (≈102 m)
- Beam spot size and momentum spread simila to NA62 Technical Design Report
 - Centered around 75 GeV/c
 - Momentum Spread: ~1%

- Beam rates:
 - Pions and kaons in good agreement
 - Slight excess of protons observed

Particle	NA62 TDR (MHz)	G4Beamline (MHz)
Pions	525	547
Protons	173	308
Kaons	45	45

- Two different simulation methods investigated:
 - 1. Sampling from particle distribution scored after TAX
 - More statistics without simulating processes in the TAX
 - Limited statistics for high momenta
 - 2. Parametrization of muon distribution scored after TAX
 - Sampling from analytical PDF with individual weights

