
SixTrack project
status, runtime environment and new developments

Present coordinator: R. De Maria
Core developers: E. McIntosh, A. Mereghetti, J. Molson, V. Olsen, T. Persson, K. Sjobak.
Main author and former coordinator: F. Schmidt.
Contributors: J. Andersson, R. Assman, A. Aviral, J. Barranco, D. Banfi, B. Dalena, M. Berz, C.
Bracco, L. Deniau, M. Fjellstrom, M. Fitterer, E. Forest, P. Garcia, M. Giovannozzi, H. Grote, P.
Hermes , G. Iadarola, M. Javed, F. James, K. Jeinemann, K. Koelbig, S. Kostoglou, L. Lari , Y. I.
Levinsen, E.H. Maclean, D. Mirarchi , A. Mituca, F. Neri, X. Valls Pla, Y. Papaphilippou, A. Patapenka,
T. Pieloni, , V. Previtali , T. Pugnat, S. Redaelli, H. Renshall, G. Ripken, G. Robert-Demolaize, A.
Rossi, A. Santamaria, K. Singh, C. Tambasco, M. Vaenttinen , T. Weiler, A. Wrulich.
LHC@Home IT support: I. Zacharov, L. Field, P. Jones, N. Oimyr.
Legal support: N. Ziogas, M. Ayass.
Special thanks to LHC@Home volunteers

1
R. De Maria, ICAP’18
23 Oct 2018

Features Highlights

• SixTrack is fast single particle tracking code used to simulate charged particle
trajectories in synchrotrons for many turns or many particles or both.

• It contains symplectic models for drift, thick dipole and quadrupoles, thin
multipoles and solenoids, accelerating cavities, (frozen) beam-beam interactions,
linear and non-linear deflecting cavities, wire, hollow e-lens, scattering models for
collimators, beam gas interaction.

• It can be interfaced with Fluka, Geant4, ROOT.

• It also computes:

• Phase space observables from tracking data: Linear and non linear invariants,
Lyapunov analysis, tunes;

• Optics functions using 4D, 5D, 6D Mais-Ripken formalisms;

• High order transfer maps, normal forms;

• It supports Linux, Windows, MacOs, FreeBSD, NetBSD, OpenBSD, GNU hurd, on
x86, amd64, ARM, ARM, PPC using gfortran, intel, nagfor compilers in a numerically
portable way for all combinations.

• It originates from RaceTrack and it has been developed at CERN in the last few
decades mainly by F. Schmidt and E. Mcintosh.

• It is open source and developed also outside CERN.

R. De Maria, ICAP’18
23 Oct 2018 2

R. De Maria, ICAP’18
23 Oct 2018 3

What is used for at CERN

SixTrack is used to:

• Evaluate impact of magnetic field imperfection in the LHC, HL-LHC, HE-LHC, FCC
and specify target for field quality.

• Evaluate the impact of weak-strong beam-beam effect in the LHC, HL-LHC, FCC with
or without machine imperfections.

• Simulate losses and collimation efficiencies and background in the SPS, LHC, HL-
LHC. FCC

• Simulate failure scenarios (e.g. crab cavities in the SPS and HL-LHC).

SixTrack is used whenever:

• the speed of MadX is not sufficient

• the flexibility and accuracy of MadX/PTC is not needed

SixTrack main value is:

• in the integration in the CERN BATCH and LHC@Home environment (using the
SixDesk runtime environment) and in the toolchains of many different LHC studies.

R. De Maria, ICAP’18
23 Oct 2018 4

LHC Dynamic Aperture Studies (DA) pipeline

Optics model Field
imperfection

Non-linear
corrections

SixTrack
Lattice

Particle
Distribution

MADX SixDesk SixTrack
Tasks

SixTrack on
BATCH or

LHC@Home

SixDesk,
SixDB

DA
Results

Tracking
Results

R. De Maria, ICAP’18
23 Oct 2018 5

Example of usage

Example of an LHC simulation:

• 30k initial conditions;

• 107 turns;

• 20k beam line elements

• 4k high order multipoles

• 200 beam-beam interactions

Code speed:

• average 100 ns per particle per beam
element

• 250-400 μs turn-particle on single core
(depending on the hardware

• Memory footprint 100 MB
Survival time in number of turns as a function of
decoupled actions.

R. De Maria, ICAP’18
23 Oct 2018 6

Example of usage

HL-LHC simulation with the combination of beam-beam effects, Landau octupoles
and power converter ripple in triplets.

Analysis using Laskar’s tune analysis post processing method from LifeTrack.

S. Kostoglou

R. De Maria, ICAP’18
23 Oct 2018 7

Programming languages, style

SixTrack is made of:

• 70K lines ported to Fortran 2008 from Fortran 77/90 code blocks.

• It use an external (but embedded) C library to generate portable special functions
(crlibm) and perform frequency analysis (naff-cpp)

• It supports several compilers and operating systems

• Can be linked with BOINC libraries for the LHC@Home project.

The style is monolithic, procedural with very few functions/procedures, dynamically
allocated shared state.

Very steep learning curve, but the resulting executable is very fast.

The code use vectorization as a form of parallelization.

SixDesk and SixDB are used to prepare, submit, manage, collect and process jobs for
LHC and FCC studies starting from MadX input and a parameter definition file.

• About 70k lines shell scripting, Python.

• Jobs management and physics intermixed.

8

SixTrack Deployment on LHC@Home

Each task is 60 particles for 105 turns in the LHC (~1/2 hours), 25M task per year.
LHC@Home more resources than what are we able to use.

R. De Maria, ICAP’18
23 Oct 2018

9
R. De Maria, ICAP’18
23 Oct 2018

SixTrack GPU effort

Main strategy:
• rewrite CPU intensive loop in subset

of C such that it can be compiled for
CPU and GPU using both OpenCL
(1.2) to use the largest set of
available hardware.

• Be compatible with CUDA for
specific application if needed

Status:
• first proofs of principles and

benchmark with realistic simulations
done;

• still furthers tests, exploration of
optimization strategies and feature
coverage needed to go in
production.

Year Cores Clock
[MHz]

GFlops
FP64

Speed [us/
(part*turn)]

Intel i7 920 2009 1 2670 5.2 545

Intel Xeon E5-2630 2016 1 2200 17 364

Intel 2x Xeon
E5-2630

2016 2x10 2200 2x340 16

Nvidia
GTX 1080

2016 2560/32 1700 288 12.8

Nvidia K20x 2015 2688/2 732 1312 10.8

AMD R9 280x 2013 2048/4 1000 1024 4.3

AMD W8100 2014 2560/2 824 2110 4.0

Nvidia P100 2016 3584/2 1480 5300 1.8

Nvidia V100 2017 5120/2 1370 7014 0.9

LHC: 8k drifts, 4.6k >11th order multipoles, 20k particles

Main bottleneck for GPU: # of register and FP64 Gflops rate

The aim is to produce an independent and portable C library to incorporate it SixTrack and
in any other code that needs a fast tracking engine.

10
R. De Maria, ICAP’18
23 Oct 2018

SixTrackLib: scaling

Optimal scaling: 20k particles
Optimization work: kernel complexity, number of kernels

Scaling using monolithic kernel:
• Whole simulation without

leaving GPU
• Big switch-case statement to

choose the element.

Two examples:
• minimal kernel: just the

elements needed
• BB: additional beam-beam lens

in the code, but not used!

20x

R. De Maria, ICAP’18
23 Oct 2018 11

Resources and future plans

Website (cern.ch/sixtrack) is the single point of information:

• Access to code: GitHub repository for SixTrack

• Documentation:

• User manual: stable but under review

• Physics manual: draft in progress but almost complete

• Developer Wiki: informal live wiki document

• Contacts: Support email, Mailing List.

• SixTrack is licensed with LGPLv2.0

Future plans:

• Continue the development and support of the main code:

• Adding new physics for LHC/HLLHC/FCC studies

• Continuous effort in refactoring and documentation

• Develop SixTrackLib:

• C Library implementing SixTrack Physics that can be embedded in other applications

• Support GPU

http://cern.ch/sixtrack
http://github.com/SixTrack/SixTrack
http://sixtrack.web.cern.ch/SixTrack/doc/manual/six.html
http://sixtrack.web.cern.ch/SixTrack/docs/user_full/manual.php
http://sixtrack.web.cern.ch/SixTrack/doc/manual/six.html
http://sixtrack.web.cern.ch/SixTrack/docs/physics_manual.pdf
https://twiki.cern.ch/twiki/bin/view/LHCAtHome/SixTrack
mailto:sixtrack.support@cern.ch
https://groups.cern.ch/group/SixTrack-Users

