Zgoubi

Recent Developments and Future Plans

Dan T. Abell, Paul Moeller, Boaz Nash, Rob Nagler — RadiaSoft LLC, Boulder, CO François Méot — BNL C-AD, Upton, NY Damian Rouson — Sourcery Institute, Oakland, CA Izaak Beekman — Paratools, Inc, Eugene, OR

Supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics, including Award No. DE-SC0017181.

ICAP'18, Key West, FL 23 October 2018

Future Plans for Zgoubi Include Enhancements to both Performance and Usability

Implement a Zgoubi graphical interface in Sirepo. Implement single-click execution of Zgoubi on available linux clusters. Update the Zgoubi code base to the Fortran 2018. Re-implement Zgoubi's particle update algorithm. Parallelize Zgoubi using Fortran 2018, including coarrays. Implement symplectic tracking for field maps. Add closed-orbit correction to Zgoubi. capabilities Assess and improve the spin dynamics in electron and ion rings for the eRHIC design. science Benchmark Zgoubi with BMad and other codes used for simulating JLEIC ring designs.

ZGOUBI Simulations 🖍 Los Alamos Proton Storage Ring 🔗 **₽** / ∧ Lattice - RingWithSextupoles 10 m **Twiss Parameters** Beamline Editor - RingWithSextupoles drag and drop elements here to define the beamline BL2 BL1 BL2 BL1 BL1 BI 1 BL3 BL1 BL1

Beamlines					
Name	Description	Elements	Start-End	+ N	ew <u>B</u> eamline Bend
BL1	(D1,QUAD-D,D2,C1,SBE	5	8.981m	8.981m	0.0°
BL2	(D1,QUAD-D,D2,C1,SBE	6	8.981m	8.981m	0.0°
BL3	(D4,SEXT-D,D3,QUAD-D,	6	8.981m	8.981m	0.0°
Ring	(BL1,BL1,BL1,BL1,BL1,E	50	0	89.81m	0.0°
RingWithSextupole	(BL1,BL2,BL3,BL1,BL1,E	54	0	89.81m	0.0°

••• Lattice

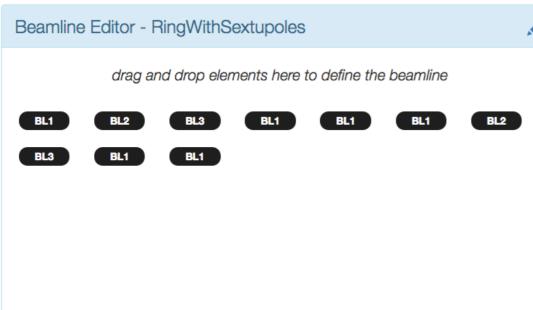
Source

Visualization

æ

Beamline Elements

		+ 1	New <u>E</u> lement
Name	Description	Length	Bend
BEND			
SBEND	B1=12,CS_0=0.2401,CS_1=1.8639,CS_2=-0.5572	2.508m	0.0°
C1			-18.0°
QUAD-D	B_2=-2.68,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
QUAD-F	B_2=1.95,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°
SEXT-D	B_3=-0.24,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
SEXT-F	B_3=0.16,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°


🙈 radiasoft

ZGOUBI

Simulations 💦 🖍 Los Alamos Proton Storage Ring 🔗

🖬 Visualization 🔅 🗸 🥹 🗸

Lattice - RingWithSextupoles

				+ N	ew <u>B</u> eamline
Name	Description	Elements	Start-End	Length	Bend
BL1	(D1,QUAD-D,D2,C1,SBE	5	8.981m	8.981m	0.0°
BL2	(D1,QUAD-D,D2,C1,SBE	6	8.981m	8.981m	0.0°
BL3	(D4,SEXT-D,D3,QUAD-D,	6	8.981m	8.981m	0.0°
Ring	(BL1,BL1,BL1,BL1,BL1,E	50	0	89.81m	0.0°
RingWithSextupoles	(BL1,BL2,BL3,BL1,BL1,E	54	0	89.81m	0.0°

••• Lattice

Source

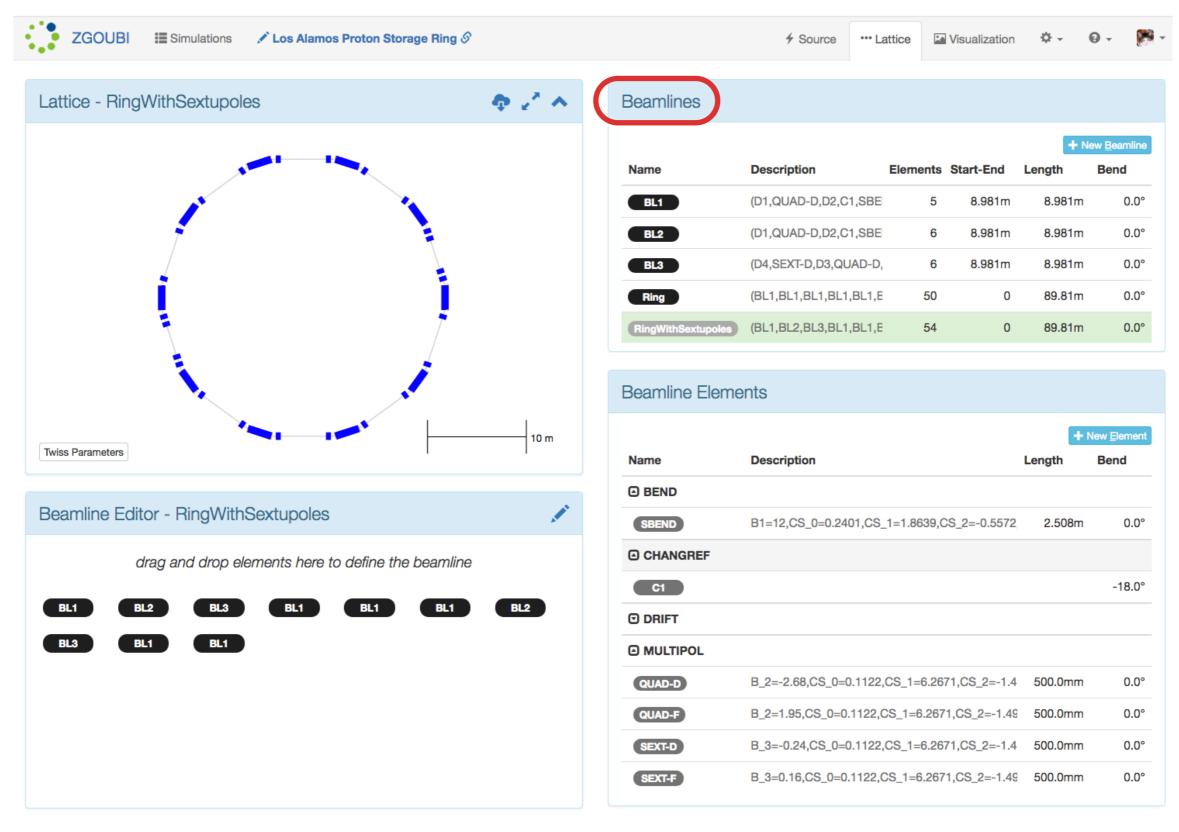
Beamline Elements

		+ 1	New <u>E</u> lement
Name	Description	Length	Bend
BEND			
SBEND	B1=12,CS_0=0.2401,CS_1=1.8639,CS_2=-0.5572	2.508m	0.0°
CHANGREF			
C1			-18.0°
QUAD-D	B_2=-2.68,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
QUAD-F	B_2=1.95,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°
SEXT-D	B_3=-0.24,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
SEXT-F	B_3=0.16,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°

Deemline Elem

	ZGOUBI	E Simulations	🖍 Los Alamos Proton Storage Ring \mathscr{S}		
Latt	ice - Ring	WithSextupol	es	⊕ 2 ² ∧	
Twiss	Parameters			10 m	(
Bea	mline Edit	tor - RingWith	Sextupoles	1	
	C	drag and drop el	lements here to define the beamline		
B		L2 BL3	BL1 BL1 BL1	BL2	

Beamlines					
Name	Description	Elements	Start-End	+ Notes	ew <u>B</u> eamlin Bend
BL1	(D1,QUAD-D,D2,C1,SBE	5	8.981m	8.981m	0.0
BL2	(D1,QUAD-D,D2,C1,SBE	6	8.981m	8.981m	0.0
BL3	(D4,SEXT-D,D3,QUAD-D,	6	8.981m	8.981m	0.0
Ring	(BL1,BL1,BL1,BL1,BL1,E	50	0	89.81m	0.0
RingWithSextupoles	(BL1,BL2,BL3,BL1,BL1,E	54	0	89.81m	0.0


*** Lattice

Source

Visualization

÷.

Beamline Eleme	ents		
		+	New <u>E</u> lement
Name	Description	Length	Bend
BEND			
SBEND	B1=12,CS_0=0.2401,CS_1=1.8639,CS_2=-0.5572	2.508m	0.0°
C1			-18.0°
QUAD-D	B_2=-2.68,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
QUAD-F	B_2=1.95,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°
SEXT-D	B_3=-0.24,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
SEXT-F	B_3=0.16,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°

A radiasoft

E Simulations / Los Alamos Proton Storage Ring &

```
✓ Source ···· Lattice III Visualization
```

Θ- 🏁

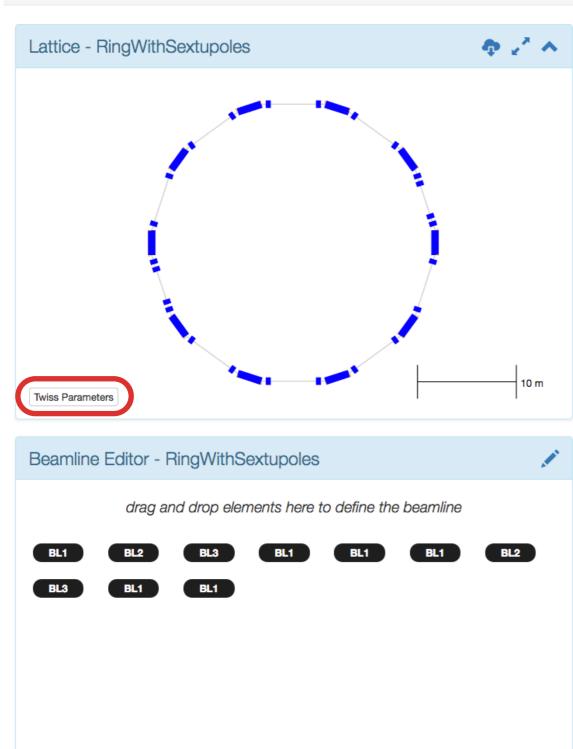
÷

Lattice - RingWithSextupoles	♦ 2 [×] ∧
Twiss Parameters	10 m
Beamline Editor - RingWithSextupoles	
drag and drop elements here to define the beamline	
BL1 BL2 BL3 BL1 BL1 BL1 BL1	BL2

Beamlines					
				+ N	ew <u>B</u> eamline
Name	Description	Elements	Start-End	Length	Bend
BL1	(D1,QUAD-D,D2,C1,SBE	5	8.981m	8.981m	0.0°
BL2	(D1,QUAD-D,D2,C1,SBE	6	8.981m	8.981m	0.0°
BL3	(D4,SEXT-D,D3,QUAD-D,	6	8.981m	8.981m	0.0°
Ring	(BL1,BL1,BL1,BL1,BL1,E	50	0	89.81m	0.0°
RingWithSextupoles	(BL1,BL2,BL3,BL1,BL1,E	54	0	89.81m	0.0°

Beamline Elements

		+ 1	New <u>E</u> lement
Name	Description	Length	Bend
BEND			
SBEND	B1=12,CS_0=0.2401,CS_1=1.8639,CS_2=-0.5572	2.508m	0.0°
C1			-18.0°
QUAD-D	B_2=-2.68,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
QUAD-F	B_2=1.95,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°
SEXT-D	B_3=-0.24,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
SEXT-F	B_3=0.16,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°

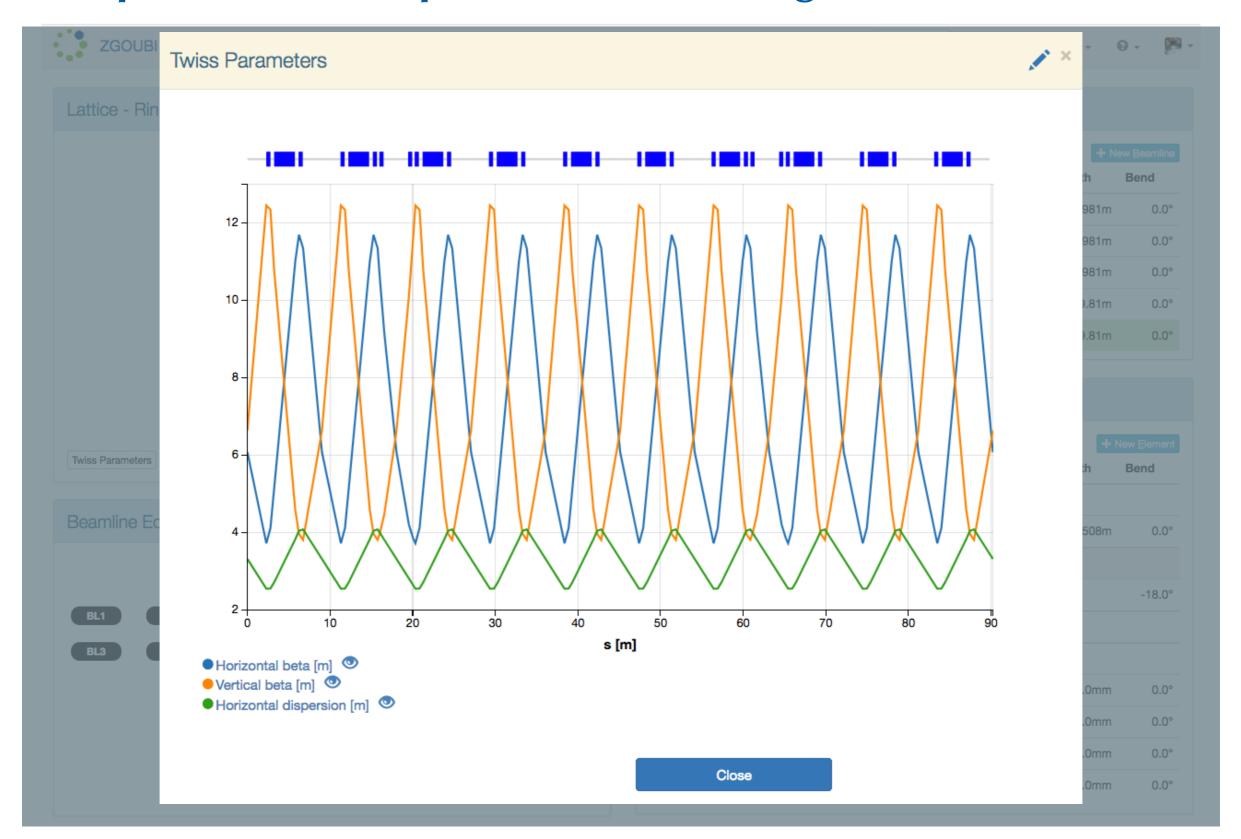


Simulations 💦 🖍 Los Alamos Proton Storage Ring 🔗

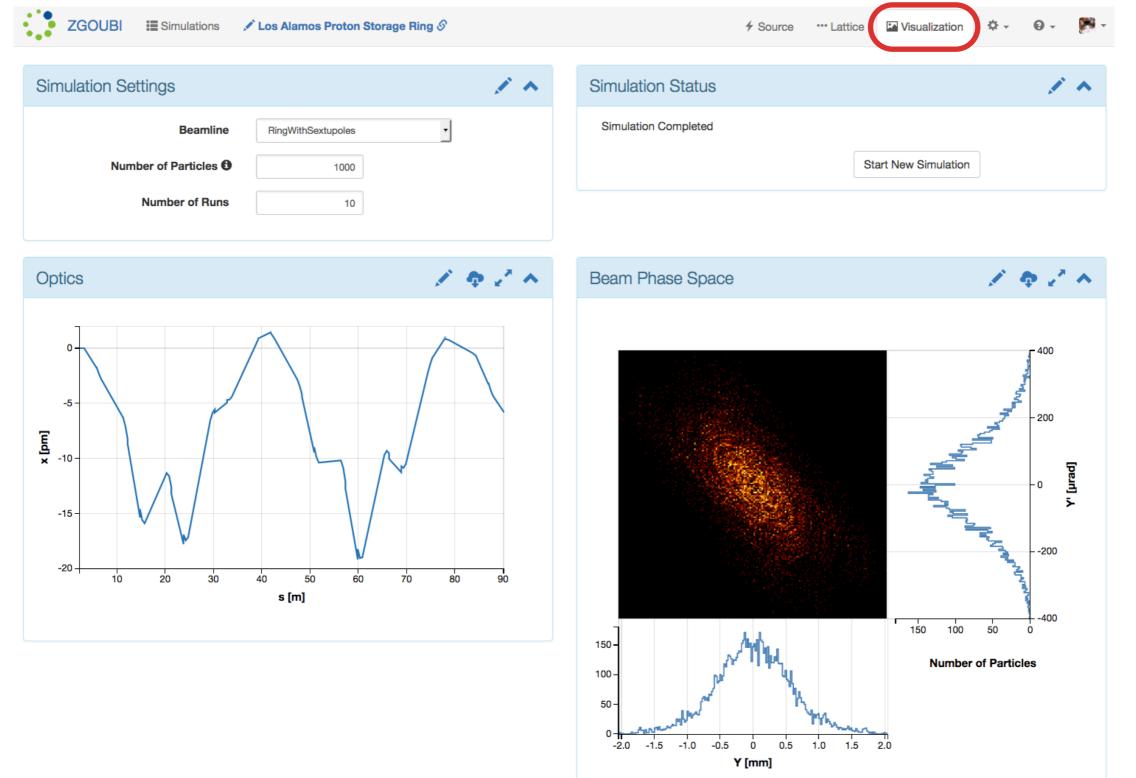
••• Lattice Visualization

0 - 🎇

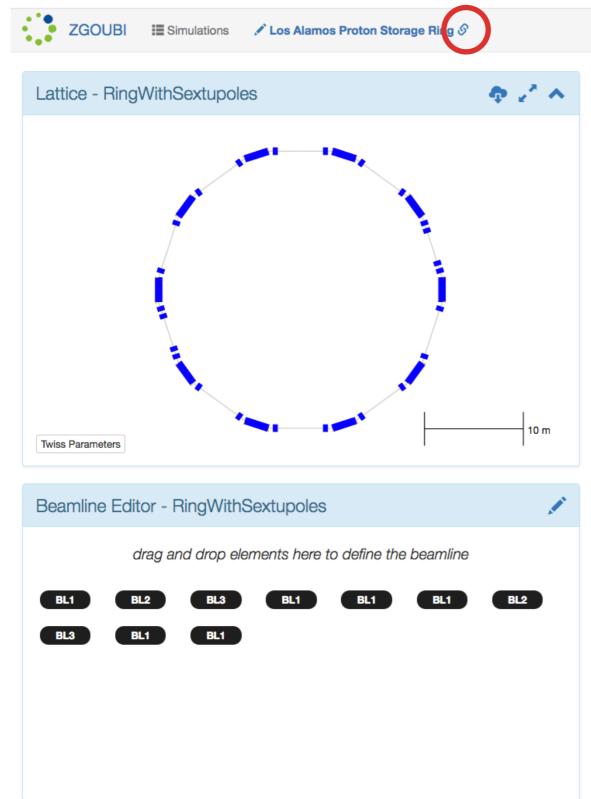
Ð



Beamlines					
				+ N	ew <u>B</u> eamline
Name	Description	Elements	Start-End	Length	Bend
BL1	(D1,QUAD-D,D2,C1,SBE	5	8.981m	8.981m	0.0
BL2	(D1,QUAD-D,D2,C1,SBE	6	8.981m	8.981m	0.0
BL3	(D4,SEXT-D,D3,QUAD-D,	6	8.981m	8.981m	0.0
Ring	(BL1,BL1,BL1,BL1,BL1,E	50	0	89.81m	0.0
RingWithSextupoles	(BL1,BL2,BL3,BL1,BL1,E	54	0	89.81m	0.0


Source

Beamline Elements


		+ 1	New <u>E</u> lement
Name	Description	Length	Bend
BEND			
SBEND	B1=12,CS_0=0.2401,CS_1=1.8639,CS_2=-0.5572	2.508m	0.0°
C1			-18.0°
QUAD-D	B_2=-2.68,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
QUAD-F	B_2=1.95,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°
SEXT-D	B_3=-0.24,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
SEXT-F	B_3=0.16,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°

A radiasoft

A radiasoft

Beamlines					
Name	Description	Elements	Start-End	+ N Length	ew <u>B</u> eamline Bend
BL1	(D1,QUAD-D,D2,C1,SBE	5	8.981m	8.981m	0.0°
BL2	(D1,QUAD-D,D2,C1,SBE	6	8.981m	8.981m	0.0°
BL3	(D4,SEXT-D,D3,QUAD-D,	6	8.981m	8.981m	0.0°
Ring	(BL1,BL1,BL1,BL1,BL1,E	50	0	89.81m	0.0°
RingWithSextupoles	(BL1,BL2,BL3,BL1,BL1,E	54	0	89.81m	0.0°

••• Lattice

Source

Visualization

÷

Beamline Elements

		+ New <u>E</u> lement	
Name	Description	Length	Bend
BEND			
SBEND	B1=12,CS_0=0.2401,CS_1=1.8639,CS_2=-0.5572	2.508m	0.0°
C1			-18.0°
QUAD-D	B_2=-2.68,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
QUAD-F	B_2=1.95,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°
SEXT-D	B_3=-0.24,CS_0=0.1122,CS_1=6.2671,CS_2=-1.4	500.0mm	0.0°
SEXT-F	B_3=0.16,CS_0=0.1122,CS_1=6.2671,CS_2=-1.49	500.0mm	0.0°

Improve Performance: Re-implement the Zgoubi Particle Update

Lorentz force law:
$$\frac{d\vec{p}}{dt} = q(\vec{E} + \vec{v} \times \vec{B})$$

Zgoubi tracks normalized velocity: $\vec{u} = \frac{1}{v}\vec{v}$ $\vec{p} = m\gamma\vec{v} = q(B\rho)\vec{u}$

Then Zgoubi writes the Lorentz force law in the form

$$\frac{\mathrm{d}}{\mathrm{d}s}(B\rho)\vec{u} = (B\rho)'\vec{u} + (B\rho)\vec{u}' = \frac{1}{v}\vec{E} + \vec{u}\times\vec{B}$$
$$\implies (B\rho)', \ \vec{u}', \ (B\rho)'', \ \vec{u}'', \ (B\rho)^{(3)}, \ \vec{u}^{(3)}, \ldots$$

... and the particle update in the form

$$\vec{r}^{f} \approx \vec{r} + \Delta s \, \vec{u} + \frac{\Delta s^{2}}{2!} \vec{u}' + \dots + \frac{\Delta s^{6}}{6!} \vec{u}^{(5)}$$
$$\vec{u}^{f} \approx \vec{u} + \Delta s \, \vec{u}' + \frac{\Delta s^{2}}{2!} \vec{u}'' + \dots + \frac{\Delta s^{5}}{5!} \vec{u}^{(5)}$$

A radiasoft

Improve Performance: Re-implement the Zgoubi Particle Update

Lorentz force law:
$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = q(\vec{E} + \vec{v} \times \vec{B})$$

Zgoubi tracks normalized velocity: $\vec{u} = \frac{1}{v}\vec{v}$ $\vec{p} = m\gamma\vec{v} = q(B\rho)\vec{u}$

Then Zgoubi writes the Lorentz force law in the form

$$\frac{\mathrm{d}}{\mathrm{ds}}(B\rho)\vec{u} = (B\rho)'\vec{u} + (B\rho)\vec{u}' = \frac{1}{v}\vec{E} + \vec{u} \times \vec{B}$$

$$\overset{distance along trajectory}{\Longrightarrow}(B\rho)', \ \vec{u}', \ (B\rho)'', \ \vec{u}'', \ (B\rho)^{(3)}, \ \vec{u}^{(3)}, \ldots$$

... and the particle update in the form

$$\vec{r}^{f} \approx \vec{r} + \Delta s \, \vec{u} + \frac{\Delta s^{2}}{2!} \vec{u}' + \dots + \frac{\Delta s^{6}}{6!} \vec{u}^{(5)}$$
$$\vec{u}^{f} \approx \vec{u} + \Delta s \, \vec{u}' + \frac{\Delta s^{2}}{2!} \vec{u}'' + \dots + \frac{\Delta s^{5}}{5!} \vec{u}^{(5)}$$

A radiasoft

Improve Performance: Re-implement the Zgoubi Particle Update—cont.

If *no* electric field, then
$$\vec{u}' = \vec{u} \times \vec{b}$$
, where $\vec{b} = \frac{1}{B\rho}\vec{B}$.

Successive derivatives of \vec{u} are computed as

$$\vec{u}'' = \vec{u}' \times \vec{b} + \vec{u} \times \vec{b}', \quad \vec{u}''' = \vec{u}'' \times \vec{b} + 2\vec{u}' \times \vec{b}' + \vec{u} \times \vec{b}'', \quad \dots$$

Successive derivatives of \vec{b} are computed as

$$\vec{b}' = \sum_{i} \frac{\partial \vec{b}}{\partial x_{i}} u_{i}$$
$$\vec{b}'' = \sum_{i} \frac{\partial \vec{b}}{\partial x_{i}} u_{i}' + \sum_{ij} \frac{\partial^{2} \vec{b}}{\partial x_{i} \partial x_{j}} u_{i} u_{j}$$

Improve Performance: Re-implement the Zgoubi Particle Update—cont.

If *no* electric field, then
$$\vec{u}' = \vec{u} \times \vec{b}$$
, where $\vec{b} = \frac{1}{B\rho}\vec{B}$.

Successive derivatives of \vec{u} are computed as

$$\vec{u}'' = \vec{u}' \times \vec{b} + \vec{u} \times \vec{b}', \quad \vec{u}''' = \vec{u}'' \times \vec{b} + 2\vec{u}' \times \vec{b}' + \vec{u} \times \vec{b}'', \quad \dots$$

Successive derivatives of \vec{b} are computed as

$$\vec{b}' = \sum_{i} \frac{\partial \vec{b}}{\partial x_{i}} u_{i}$$
$$\vec{b}'' = \sum_{i} \frac{\partial \vec{b}}{\partial x_{i}} u_{i}' + \sum_{ij} \frac{\partial^{2} \vec{b}}{\partial x_{i} \partial x_{j}} u_{i} u_{j}$$

Truncated power series algebras (TPSAs) perform essentially the same computations; hence we can take advantage of efficient TPSA algorithms. Doing so reduces both memory footprint and corresponding arithmetic by roughly a factor of 3.

Improve Performance: Parallelize Zgoubi using Fortran 2018

The coarray programming model is designed to answer the question 'What is the smallest change required to convert Fortran into a robust and efficient parallel language?'. — John Reid, *ISO/IEC JTC1/SC22/WG5 N1824* (2010)

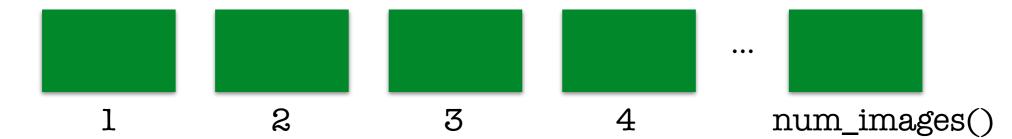
Coarray syntax implements a Single Program Multiple Data (SPMD) model.

A single program is replicated in units called *images*.

The number of images may be chosen at compile time.

x(:) = y(:)[q] ! access remote data on image q

🙈 radiasoft


Improve Performance: Parallelize Zgoubi using Fortran 2018

The coarray programming model is designed to answer the question 'What is the smallest change required to convert Fortran into a robust and efficient parallel language?'. — John Reid, *ISO/IEC JTC1/SC22/WG5 N1824* (2010)

Coarray syntax implements a Single Program Multiple Data (SPMD) model.

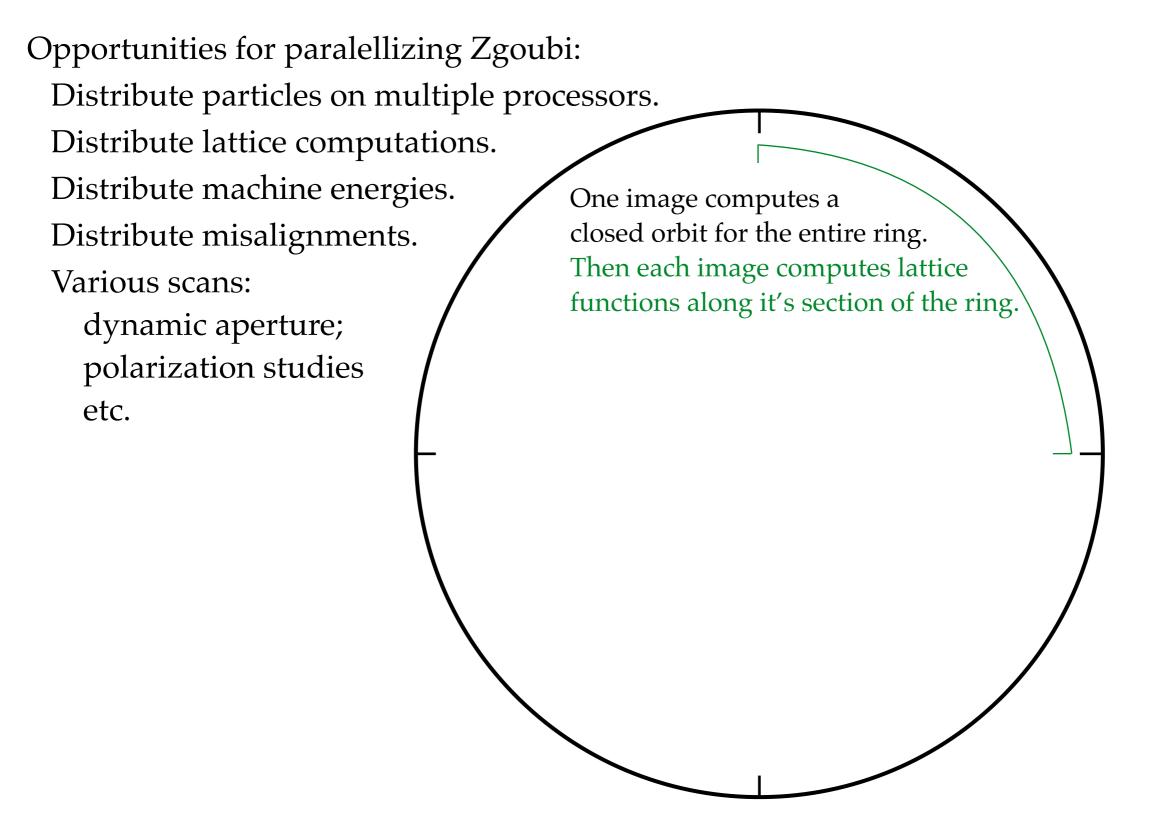
A single program is replicated in units called *images*.

The number of images may be chosen at compile time.

real :: a[*] ! scalar coarray

real, dimension(10) :: x[*], y[*] ! array coarray
real :: m(0:21,6)[*] ! matrix coarray
type(particle) :: ptcl(128)[*] ! derived type coarray
real :: array(10,20)[10,-1:8,0:*] ! more complex coarray

x(:) = y(:)[q] ! access remote data on image q


A coindex indicates communication. The programmer must ensure that

* coarray indices are properly resolved,

synchronization occurs as appropriate.

The new Fortran standard includes new intrinsics that simplify the process.

Improve Performance: Parallelize Zgoubi using Fortran 2018—cont.

Supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics, including Award No. DE-SC0017181.

