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schematic taken from [1]

I scattering a high intensity laser off a relativistic electron beam
I Doppler shift allows for dramatic increase in photon energy
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Introduction: Thomson Scattering



schematic taken from [1]

ν ′ = ν0
1− β cos θi

1− β cos(θf ) + hν0
γmc2 (1− cos θp)
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Introduction: Thomson Scattering



I conventional X-ray sources require GeV electron beams
I Thomson sources can achieve high photon energies with relatively low energy

electron beams (e.g. 40 keV photons from 50 MeV electrons)
I tunability
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Motivation



schematic taken from [1]

I scattered photons travel in direction of electron beam
I cone of half angle 1/γ
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Properties: Tunability
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I incident angle dictates Doppler shift and frequency of scattered photons
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Properties: Tunability



I Monte Carlo methods like CAIN [2] exist
I high computation cost for large amounts of particles

I other analytical codes exist, but we couldn’t find any with coherent treatment
of radiation

I FEL codes include coherent treatment but the scenario doesn’t match
I goal: quick code to prove concepts for new machines and prototyping
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Analytical Calculations



I substantial work done by S. K. Ride, E. Esarey and others [3] [4]
I analytical integration of Liénard-Wiechert potentials using Bessel identities
I code does not integrate numerically
I evaluation of complex Bessel functions
I written in python
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Analytical Calculations



Normalized intensity for counterpropagating linearly polarized laser (N = 7, λ = 500 nm)
and relativistic electron (γ = 100) as a function of photon energy and scattering angle.
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Code Validation: Linear Polarization



Normalized Intensity of radiation scattered by a relativistic electron (γ = 10) from a
counterpropagating high intensity (ao = 2) linearly polarized laser pulse, viewed in plane
of the detector. The detector is located at z ′ and centered on the electron beam axis.
Distances in x ′, y ′ are measured in units γ0(x ′/z ′), γ0(y ′/z ′) ∝ γ0θ. The first three
harmonics are shown.
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Code Validation: Linear Polarization



Normalized Intensity of transversely scattered radiation by a relativistic electron (γ = 10)
traveling in plane of polarization of a high intensity (ao = 2) linearly polarized laser pulse,
viewed in plane of the detector. The detector is located at z ′ and centered on the electron
beam axis. Distances in x ′, y ′ are measured in units γ0(x ′/z ′), γ0(y ′/z ′) ∝ γ0θ. The first
three harmonics are shown.
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Code Validation: Linear Polarization



Normalized Intensity of radiation scattered by a relativistic electron (γ = 10) from a
counterpropagating high intensity (ao = 2) circularly polarized laser pulse, viewed in plane
of the detector. The detector is located at z ′ and centered on the electron beam axis.
Distances in x ′, y ′ are measured in units γ0(x ′/z ′), γ0(y ′/z ′) ∝ γ0θ. The first three
harmonics are shown.
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Code Validation: Circular Polarization



Normalized Intensity of transversely radiation scattered by a relativistic electron (γ = 10)
from a high intensity (ao = 2) circularly polarized laser pulse, viewed in plane of the
detector. The detector is located at z ′ and centered on the electron beam axis. Distances
in x ′, y ′ are measured in units γ0(x ′/z ′), γ0(y ′/z ′) ∝ γ0θ. The first three harmonics are
shown.
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Code Validation: Circular Polarization



Intensity of radiation in arbitrary units produced by a single electron on the right and by
two identical electrons treated coherently on the left. The coherent addition of radiation
increases the intensity four-fold.
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Code Validation: Coherent Tests with Two Electrons



I laser field can be compared to undulator field
I laser pulse introduces an additional phase factor

Coherent addition of radiation produced by two electrons half a wavelength apart. Laser
phase factor has been omitted on the right.
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Code Validation: Coherent Tests with Two Electrons



I laser field can be compared to undulator field
I laser pulse introduces an additional phase factor

Coherent addition of radiation produced by two electrons half a wavelength apart. Laser
phase factor has been omitted on the right.
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Code Validation: Coherent Tests with Two Electrons



Intensity of radiation produced by a Gaussian bunch (γ = 69.5) interacting with a circularly
polarized laser pulse (λ = 2.665 cm). Incoherent addition on the left, coherent addition on
the right.
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First Results: Gaussian Bunch



I 200 k particles simulated with 80× 80 pixel detector resolution
I Gaussian energy spread and longitudinal distribution
I no transverse momenta or displacement
I incoherent increase in intensity matches expectations for number of particles
I coherent addition is very noisy

I most radiation cancels out
I spectrum is dominated by minority of particles
I pseudo-random generation of bunch amplifies this effect
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First Results: Gaussian Bunch



Energy spread and longitudinal electron distribution of the simulated bunch.
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First Results: Microbunching



Intensity of radiation produced by a microbunched beam (γ = 69.5) interacting with a
circularly polarized laser pulse (λ = 2.665 cm). Relatively low energy spread on the left,
larger energy spread on the right

Paul Volz, ICAP’18, Key West, October 20-24 2018 20

First Results: Microbunching



I 200 k particles simulated with 80× 80 pixel detector resolution
I no transverse momenta or displacement
I strong microbunching of 60 % with non-zero bandwidth
I runtime: about 2000 s on a workstation CPU
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First Results: Microbunching



I fast analytical code
I correctly handles coherent addition of radiation for two electrons
I emittance needs to be fully implemented
I noise levels of coherent addition need to be improved
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Conclusion Outlook



Thank you for your attention!
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I substantial work done by S. K. Ride, E. Esarey and others [3] [4]
I integration of Liénard-Wiechert potentials
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I integral can be split by polarization
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I solution via Bessel identity

exp (ib sinσ) =
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Jn(b) exp (inσ)
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