Mean-field density evolution of bunched particles with non-zero initial velocity

Brandon Zerbe, Phil Duxbury

NSF Grant: 1803719 and RC108666
Outline

I. Literature review

II. New cylindrical expression and validation

III. Conclusions
Outline

I. Literature review

II. New cylindrical expression and validation

III. Conclusions
The pancake regime

Cigar (normal) : $\Delta z >> \Delta x$

- Short bunches
- Denser bunches
- Virtual cathode limit

Valfells, 2002 Physics of Plasmas

- Space-Charge dominated
 - Intense non-linearities
- Cost: Less overall particles

Pancake (UEM) : $\Delta z << \Delta x$
Density Projection

Slicing

Zerbe, 2018 PRAB
Aperture → Brightness increase

\[\epsilon_x^2 = |\text{COV}(x, p_x)| \]

\[B_{4D} = \frac{N}{\epsilon_x^2} \]

\[B_{6D} = \frac{N}{\epsilon_x^2 \epsilon_z} \]

Williams, 2017 Presentation
Fluid models for this?

\[F_e = -k^2 x \]

\[\rho_0 = \text{initial probability-like density} \]

\[\rho_u = \frac{k^2 m v^2}{4 \pi e^2} = \frac{N}{\text{Perveance} / k^2} \]

\[\rho(r, z) = \frac{\rho_u}{1 + \left(\frac{\rho_u}{\rho_0} - 1 \right) \cos(kz)} \]

Formation of shock (simulations only – laminar theory does not see this phenomenon)

\(r @ \text{different t's} \)
Fluid models for this?

\[F_e = -k^2 x \]

\[\rho_0 = \text{initial probability-like density} \]

\[\rho_u = \frac{k^2 m v^2}{4 \pi e^2} = \frac{N}{\text{Perveance} / k^2} \]

\[\rho(r, z) = \frac{\rho_u}{1 + \left(\frac{\rho_u}{\rho_0} - 1 \right) \cos(kz)} \]

Formation of shock (simulations only – laminar theory does not see this phenomenon)

Here \(k = 0 \)
Fluid models for this?

Evolution of pancake width – A 1D problem

\[\rho(z; t) = \rho_0 \frac{1}{1 + \frac{q \sum_{\text{tot}}}{2 m \varepsilon_0} \rho_0 t^2} \]

Longitudinal

Time evolved instead of along trajectory

1D in figure

Fluid models for this?

Evolution of pancake width – A 1D problem

\[\rho(z; t) = \frac{\rho_0}{1 + \frac{q \sum_{t_{\text{ot}}} \rho_0 t^2}{2 m \epsilon_0}} \]

Time evolved instead of along trajectory

Longitudinal

Attempt to model for dense cylindrical (cigar) beams to see if shock can be observed
Our fluid models

Cylindrical

\[\rho(r; t) = \frac{\rho_0^2}{r^2} \frac{1}{1 + \left(\frac{\rho_0^2}{\rho_2} - 1 \right) 2 \sqrt{\ln \frac{r}{r_0}} F \left(\sqrt{\ln \frac{r}{r_0}} \right)} \]

Spherical

\[\rho(r; t) = \frac{\rho_0^3}{r^3} \frac{1}{1 + \frac{3}{2} \left(\frac{\rho_0^3}{\rho_3} - 1 \right) \frac{r_0}{r} \sqrt{1 - \frac{r_0^2}{r^2} \tanh^{-1} \left(\sqrt{1 - \frac{r_0^2}{r^2}} + 1 - \frac{r_0}{r} \right)}} \]

Solid lines: Theory
Circles: PIC (Warp)
Triangles: N-particle (COSY Infinity and home-made)
Take aways

• Step away from UEM
 - Discuss cylindrical evolution

• PIC (Vlasov) and N-particle (Coulomb) typical
 - New self-consistent laminar density evolution
 • Validation
 • Identify when it breaks down

• Our previous fluid model has no velocity
 - I fixed that
Laminar beams

Wangler's Prin. RF Linac

The ideal beam with highest beam quality is called the laminar beam because it exhibits laminar-like flow. A laminar beam represents the ideal of a highly ordered and coherent beam, which is never exactly realized.
Outline

I. Literature review

II. New cylindrical expression and validation

III. Conclusions
Derivation idea

- Lagrangian particle with initial velocity can be mapped to Lagrangian particle at different time that has zero velocity
 - v_{r2}: velocity scale
 \[v_{r2} = \sqrt{\frac{q \Lambda_{tot} \bar{\rho}_{02}}{m \epsilon}} r_0 \]
 - r_{t2}: turn-around radius
 \[r_{t2} = r_0 e^{-v_0^2/v_{r2}^2} \]
 - t_{ft2}: time-position free expansion relation from turn-around point under spherical symmetry
 - t_{t2}: time to turn around point (- if $v_0 < 0$)

- Time position-relation can be summarized as
 \[t = \pm t_{ft2} - t_{t2} \]

- Evolution derived exactly like previously
Cylindrically-symmetric uniform distribution with non-zero initial velocity

\[v_0 = C \frac{r_0}{R} \]
\[v_{r2} = 10^5 \frac{m}{s} \frac{r_0}{R} \]

\[C = 10^5 \text{ m/s} \]
\[C = -10^5 \text{ m/s} \]

Large outward
Large inward

Solid lines: Theory
Circles: PIC (Warp)
Analogous Gaussian

\[v_0 = C \frac{r_0}{\sigma_r} \]
\[v_{r2} = 1.4 \times 10^5 \frac{m}{s} \sqrt{1 - e^{-\frac{r_0^2}{2\sigma_r^2}}} \]

Solid lines: Theory
Circles: PIC (Warp)
What is going on here?

$$r_{t2} = r_0 e^{-v_0^2/v_{r2}^2}$$

If $v_0 \ll v_{r2}$

$$r_{t2} \approx r_0$$ → Earlier, cold SC-dominated model approximate – slightly delays shock

If $v_0 \gg v_{r2}$

Initial velocity profile very important

→ Here: transforms Gaussian to uniform-like, i.e. it loses the shock
Analogous Gaussian

\[v_0 = C \frac{r_0}{\sigma_r} \]

\[v_{r2} = 1.4 \times 10^5 \frac{m}{s} \sqrt{1 - e^{-\frac{-r_0^2}{2\sigma_r^2}}} \]

Solid lines: Theory
Circles: PIC (Warp)

<table>
<thead>
<tr>
<th>Small velocity</th>
<th>Medium velocity</th>
<th>Large velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C = 0)</td>
<td>(C = -10^4 \text{ m/s})</td>
<td>(C = -10^5 \text{ m/s})</td>
</tr>
</tbody>
</table>

Inward

\(C = 15 \text{ ns} \)
\(C = 17 \text{ ns} \)
\(C = 19 \text{ ns} \)
\(C = 21 \text{ ns} \)
\(C = 23 \text{ ns} \)
\(C = 25 \text{ ns} \)

\(C = 8 \text{ ns} \)
\(C = 9 \text{ ns} \)
\(C = 10 \text{ ns} \)
\(C = 11 \text{ ns} \)
\(C = 12 \text{ ns} \)
\(C = 13 \text{ ns} \)

\(C = 3.6 \text{ ns} \)
\(C = 4.0 \text{ ns} \)
\(C = 4.4 \text{ ns} \)
\(C = 5 \text{ ns} \)
What is going on here?

\[r_{t2} = r_0 e^{-v_0^2/v_{r2}^2} \]

If \(v_0 \ll v_{r2} \)

\[r_{t2} \approx r_0 \quad \rightarrow \text{Earlier, cold SC-dominated model still approximate – slightly moves shock earlier} \]

If \(v_0 \gg v_{r2} \)

Initial velocity profile very important

\(\rightarrow \) Here: linear velocity breaks laminar assumption in the middle of the bunch, so bunch bounces back faster in model than reality
Cylindrical Gaussian with spatially non-linear initial velocity

\[v_0 = C \sqrt{1 - e^{\frac{r_0^2}{2\sigma_r^2}}} \]

\[v_{r2} = 1.4 \times 10^5 \frac{m}{s} \sqrt{1 - e^{\frac{r_0^2}{2\sigma_r^2}}} \]

Solid lines: Theory
Circles: PIC (Warp)
Outline

I. Literature review

II. New cylindrical expression and validation

III. Conclusions
Conclusions

- Surprisingly accurate self-consistent analytic model that predicts laminar density evolution
 - VERY fast
 - Able to predict through crossovers, i.e. focii
- Predicts when beam becomes non-laminar
 - Temperature?
- Physics captured by velocity scale, v_{r2}
- Spherical case in paper (similar)
- Expect pancake regime to be qualitatively similar to higher dimensions