

First Steps Towards a New Finite Element Solver for MOEVE PIC Tracking

U. van Rienen, J. Heller, D. Zheng and C.R. Bahls^a

ICAP 2018, 23.10.2018

 $^{a}\mbox{Work}$ supported by the German Federal Ministry for Research and Education BMBF under contract 015K16HRA

Traditio et Innovatio

Outline

- Introduction
- Replacing MOEVE's FD Solver with FEM from FEniCS
- First Results
- Summary and Future Directions

Traditio et Innovatio

MOEVE

- In-house Particle-in-Cell (PIC) code, written mostly in C¹
- Particle mesh method
- Underlying mathematical approach: Finite Difference (FD) method
- Poisson's equation solved by conjugate gradient method with geometric multigrid as preconditioner
- Implemented in ASTRA² and GPT³

 ¹G. Pöplau. MOEVE: Multigrid Poisson Solver for Non-Equidistant Tensor Product Meshes (2003)
 ²K. Flöttmann. ASTRA: A space charge tracking algorithm. Manual, Version 3 (2014)
 ³S. van der Geer, M. de Loos. The general particle tracer code. Design implementation and application (2001)

Ion clouds and Ion Clearing

- Residual gas can be ionized rapidly by electron beam ightarrow ion cloud
- Current-limiting factor for many synchrotron radiation sources
- Source of beam instabilities and beam loss
- Hinders continuous filling of electron bunches
- Main strategies to ensure a minimum stability in standard operational regimes:
 - Clearing gaps
 - Clearing electrodes
- High-current operation at ERL facilities requires precise analysis and development of appropriate measures to suppress ion-induced beam instabilities

Investigation of Ion Dynamics over Longer Distances

- Longitudinal transport of ions through the whole accelerator plays a key role for the establishment of the ion concentration in the machine
- This aspect of the dynamics has implications on both the beam dynamics and the ion clearing efficiency but it has not been deeply studied up to now
- Extent to which resonators contribute to the transport is largely unclear
- Thus, we are targeting a fast, systematic investigation of ion dynamics of the machines involving the impact on the beam
- Shall be applied to reduce the effects related to ionized residual gas in high-current electron machines
- This study follows our previous investigations on ion trapping in high-current storage rings and linear accelerators e.g. for bERLinPro

Federal Ministry of Education and Research

Cloud_t.dat Bunch t.dat Time Integration of the equations Cloud.inp External Fields of motion, moving particles Bunch.inp $(\boldsymbol{E},\boldsymbol{B})_i$ $(\mathbf{F})_i \to (\mathbf{v})_i \to (\mathbf{r}(t + \Delta t))_i$ Mainput.inp Field Interpolation Charge weighting $(\mathbf{r}(t), Q)_i \to (\rho)_m$ $(\boldsymbol{E},\boldsymbol{B})_m \to (\boldsymbol{F})_i$ Solution of the Poisson equation on the grid $(\rho)_m \to (\mathbf{E'})_m$ $E_{||} = E'_{||} \qquad B_{||} = 0$ MOEVE $E_{\perp} = \gamma E'_{\perp}$ $B_{\perp} = \frac{\gamma}{c^2} (\boldsymbol{v} \times \boldsymbol{E}')_{\perp}$ 4

⁴A. Markovic. Simulation of the interaction of positively charged Beams and electron clouds. PhD Thesis. Rostock University, 2013.

Traditio et Innovatio

Limitations due to Finite Differences and an Alternative

- MOEVE's prior limitations due to the underlying FD discretization:
 - Comparably large number of degrees of freedom (DOFs) required for accurate solution e.g. since tensor product grid of FD poorly approximates general boundary geometries
 - PIC scales with number of macro-particles and required mesh cells of discretization number of macro-particles can not be further reduced but one can reduce the number of mesh cells by using a different discretization technique, e.g. the Finite Element Method (FEM)
- Using appropriate ansatz functions in FEM, e.g. *Crouzeix-Raviart* elements allows improving convergence by at least one order⁵ → quadratic (or better) convergence in the force with FEM compared to linear convergence using FD → reduction in the number of mesh cells gets possible

⁵C.R. Bahls. *Space charged calculations using refinements on structured and unstructured grids*. PhD Thesis. Rostock University, 2015.

Replacing the FD Solver with FEM from FEniCS

 Electric field of charge density ρ(x) results from scalar potential u(x) obtained from Poisson's equation on domain Ω:

$$-\Delta u(x) = rac{
ho(x)}{arepsilon} \quad \forall x \in \Omega,$$
 (1)

with vacuum permittivity ε_0 and following boundary conditions on $\partial\Omega$

$$u(x) = g_D(x) \quad \forall x \in \partial \Omega_D,$$
 (2)

$$\frac{\partial u(x)}{\partial n(x)} = g_N(x) \quad \forall x \in \partial \Omega_N.$$
(3)

Traditio et Innovatio

Weak Formulation of Poisson's Equation

- We use FEniCS⁶ to solve this boundary value problem after FEM discretization
- FEniCS allows to directly write down the weak formulation of Poisson's equation:

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx = \int_{\Omega} \frac{\rho(x)}{\varepsilon_0} \, v(x) \, dx \quad \forall v \in V \tag{4}$$

as a pair of a bilinear form a(u, v) and linear form L(v)::

$$a(u,v) = \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx; \quad L(v) = \int_{\Omega} \frac{\rho(x)}{\varepsilon_0} \, v(x) \, dx \quad (5)$$

⁶A. Logg, K.-A. Mardal, G. N. Wells et al. *Automated Solution of Differential Equations by the Finite Element Method*. Springer, 2012

n

Some Aspects of FEniCS Implementation

- Meshing, definition of function spaces and bilinear form, etc. very straightforward
- Assembly of system matrix and solution by PETSc (Krylov subspace solvers) calls
- Use of charge weighting PointSource from DOLFIN⁷
- Available function spaces for field interpolation
 - Raviart-Thomas FE space
 - Brezzi-Douglas-Marini FE space
 - Discontinous-Galerkin vector function space
 - Continuous Lagrange (Courant) vector function space

⁷A. Logg, G. N. Wells and J. Hake. *DOLFIN: a C++/Python Finite Element Library. Automated Solution of Differential Equations by the Finite Element Method.* 2012.

Traditio et Innovatio

First Results

- Simple model problem
 - Tracking of an electron bunch of Gaussian distribution in all directions for a short drift space of 3.0 ${\rm m}$
 - Initial bunch is generated by ASTRA⁸
 - Bunch profile is listed in table on next slide
 - No external electromagnetic field
 - No ion cloud
- Comparison with ASTRA: rms bunch size and emittance growth were compared with ASTRA for transverse directions

⁸K. Flöttmann. ASTRA: A space charge tracking algorithm. Manual, Version 3 (2014)

Traditio et Innovatio

Bunch Profile for Tracking

Parameters of the electron bunch	
Number of macro particles	5,000
Beam energy	$15 { m MeV}$
Beam energy spread	$1.49~{ m keV}$
Beam charge	-0.4 nC
Transverse emittance	1.0 π mradmm
Bunch length	$0.88~\mathrm{mm}$
rms bunch radius	$0.362~\mathrm{mm}$

Traditio et Innovatio

RMS Bunch Size Growth Normalized x RMS bunch size Normalized v RMS bunch size 0.040% Moeve FEM Moeve EEN 0.035% ASTRA ASTRA 0.035% 0.44 0.44 0.030% 0.030% nRMS x (mm) nRMS y (mm) 0.025% 0.025% 0.42 0.42 0.020% 0.020% 0.40 0.40 0.015% 0.015% à 0.010% 0.010% 0.38 0.38 0.005% 0.005% 0.000% 0.000% 0.36 0.36 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 z (m) z (m)

Bunch size growth in transverse directions for a drift distance of 3.0 m without external electromagnetic fields as computed by MOEVE based on FEM and ASTRA, respectively. The relative error is shown as well.

Traditio et Innovatio

Emittance Growth

Emittance growth in transverse directions for a drift distance of 3.0 m without external electromagnetic fields as computed by MOEVE based on FEM and ASTRA, respectively. The relative error is shown as well.

Traditio et Innovatio

Results

- Results of MOEVE with the FEM-based FEniCS implementation and ASTRA agree very well both for the transverse bunch size growth and the emittance
- Relative error in the transverse bunch size growth follows a very similar functional behaviour as the transverse bunch size growth itself and reaches less than 0.04%
- Emittance stays constant over the drift so does the relative error of about 0.003%

Summary

- MOEVE with new FEM-based FEniCS implementation to track electron bunches
- First study on simple model problem of tracking through a drift space without external electric field showed very good agreement with results obtained by ASTRA

Next Steps and Future Perspective

- Improve computational performance by MPI parallelization throughout the code
- Improve charge weighting with PointSource and speed of interpolating the electric field at particle position
- Implement adaptive hp-refinements, i.e. element size (h) and polynomial degree (p)
- Validation with measurements from ELSA in Bonn ⁹.
- Study ion cloud dynamics in bERLinPro¹⁰

⁹D. Sauerland, W. Hillert, A. Meseck. *Estimation of the ion density in accelerators using the beam transfer function technique*, Proceedings of IPACâĂŹ15 (2015)

¹⁰B. Kuske, N. Paulick, A. Jankowiak, J. Knobloch. *Conceptual Design Report* (2012)

Federal Ministry of Education and Research

Additional Slides on FEniCS Implementation

23.10.2018 © 2018 UNIVERSITÄT ROSTOCK I GENERAL ELECTRICAL ENGINEERING, FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 18 / 2

Some Aspects of FEniCS Implementation

• To be able to do this one has to import the Python module dolfin:

```
from dolfin import *
```

specify the discrete function spaces (depending on the mesh used):

- V = FunctionSpace(mesh, "CG", degree)
- u = TrialFunction(V)
- v = TestFunction(V)

One can directly write down the bilinear form a as:

a = dot(grad(u), grad(v))*dx(mesh)

Preparation of System Matrix and Right Hand Side

• We can now prepare and assemble the system matrix A for the solver included in FEniCS:

```
template = PETScMatrix()
```

```
A = assemble(a,tensor=template)
```

- The linear form *L* in the weak formulation of Eq. (1) as given in Eq. (4) depends on the charge density arising from the charges in the domain.
- Starting from a constant $\rho = 0$ one can assemble the right hand side linear form *L* and the corresponding vector rhs:

```
L = Constant(0.0)*v*dx(mesh)
rhs = assemble(L)
```


Charge Weighting and Boundary Conditions

• We use the charge weighting implemented by the method PointSource from DOLFIN to add macro-particles to the right hand side:

```
macro_particles = []
for i in range(Number_of_Particles):
macro_particles.append((Particle[i], charge[i]/eps0))
delta = PointSource(V, macro_particles)
delta.apply(rhs)
```

• The definition and application of the boundary condition g_D on $\partial {\Omega_D}^{11}$

```
bc = DirichletBC(V, g_D,"on_boundary")
bc.apply(A)
bc.apply(rhs)
```

¹¹For ease of exposition, we choose to only show the implementation using a Dirichlet boundary

Solver Setup and Numerical Solution

 Setup of the solvers provided through DOLFIN (here the conjugate gradient method):

```
solver = PETScKrylovSolver("cg","default")
solver.parameters["relative_tolerance"] = residual
solver.set_operator(A)
```

• Solving for the unknown potential u(x):

u_x = Function(V)
solver.solve(u_x.vector(), rhs)

Computation of Electric Field

• The electric field \vec{E} can then be computed from the gradient $\nabla u(x)$ of the solution.

e_temp = -grad(u_x)

• To be applicable as an interpolated field it has to be projected onto an appropriate function space. For example the continuous Lagrange vector function space:

```
Efield = project(e_temp, VectorFunctionSpace(mesh,\
"CG", degree-1))
```

 The computed field can next be used to accelerate the particles using the well-known Boris pusher.¹²

¹²J.B. Boris. Relativistic plasma simulation-optimization of a hybrid code". Proceedings of the 4th Conference on Numerical Simulation of Plasmas, November 1970. Naval Res. Lab., Washington, D.C.