SNS Beam Test Facility for Experimental Benchmarking of High Intensity Beam Dynamics Computer Simulation

<u>A.Aleksandrov¹</u>, B.Cathey²,

S.Cousineau^{1,2}, Z.Zhang², A.Zhukov¹

¹Oak Ridge National Laboratory, USA ²University of Tennessee, USA

ORNL is managed by UT-Battelle for the US Department of Energy

This work has been partially supported by NSF Accelerator Science grant 1535312

Beam loss control in high power hadron linac demands for accurate tracking of a <u>very small fraction</u> of particles having <u>large oscillation amplitudes</u>

• Less than ~10⁻⁶ for 1MW beam, even smaller for higher power

Necessary ingredients for <u>realistic</u> beam loss simulation

• Good PIC tracking code: accurate representation of e/m forces, tracking

SNS Beam Test Facility (BTF)

2.5MeV accelerator with beam lines dedicated for beam dynamics experiments

Problem #1. Initial particles distribution

How to represent bunch of particles

"True" six-dimensional distribution function

 $f_6(x, x', y, y', z, z')$ - true 6D distribution function as defined earlier

$$f_2(x,x'); f_2(y,y'); f_2(z,z')$$

easily measurable 2D projections of f_6 on x, y, z planes

$$f_{3*2}(x, x', y, y', z, z') = f_2(x, x') \cdot f_2(y, y') \cdot f_2(z, z')$$

Often erroneously called "measured 6D distribution"

$$f_{3*2}(x, x', y, y', z, z') \neq f_6(x, x', y, y', z, z')$$

except for special case of no correlations between degrees of freedom

$$f_6(x, x', y, y', z, z') = f_x(x, x') \cdot f_y(y, y') \cdot f_z(z, z')$$

definition of uncorrelated degrees of freedom

6D measurement arrangement

SNS BTF set up for 6D phase space measurement

SNS BTF Beam Line for 6D scan

Observed correlation in x'-w partial projection

$$f(x',w) = \int dt \cdot f_{6}(t,x = y = y' = 0)$$

$$f(x',w) = \int dt \cdot f_{6}(t,x = y = y' = 0)$$

$$f(x',w) = \int dt \cdot f_{6}(t,x = y = y' = 0)$$

$$f(x',w) = \int dt' \cdot f(w)$$

$$f(x',w) = \int (x',w) \cdot f(w)$$

$$f(x',w) = f(x') \cdot f(w)$$

$$f(x',w) = \int dt dx dx' dy dy' \cdot f_{6}(x,x',y,y',w,t)$$

$$hoks ordinarily$$

10

Partial projections of interest can be studied with faster than 6D partial scans

Dependence of partial projection f(w) on dimensionality (number of non-integrated variables)

Dependence of partial projection f(w) (x=x'=y=y'=0) on beam current

D>4 measurements are required to observe this correlation

Space charge effect seems to create correlation

Similar patterns are observed in beam simulation with strong space charge

Problem #2. Knowledge of beam line state

FODO line experiment

- Beam dynamic simulation benchmark facility :
 - Measured 6D distribution at input
 - Use FODO transport channel as simulation "benchmark case"
 - Made of identical equidistant permanent magnets
 - "Matched" or "mismatched" beam conditions at the FODO entrance

FODO beam line design

permanent magnet quad holding structure

FODO phase advance can be adjusted off-line by changing magnets spacing

Design beam envelope along the beam line

Gradient of the last FODO quadrupole:

 $G_{FQ19} = 24 \text{ T/m}$ (integrated strength: 1.8T)

Mismatch Factor =2

Problem #3. Verification tools = beam diagnostics + representation

High Dynamic Range measurements (halo)

- Measure 1D profiles with ~ 10^7 dynamic range
- Expect 10⁵-10⁶ dynamic range for 2D emittance scans

Phase space density plot to characterize particles distribution

Simulated phase space density plots at end of FODO for different mismatch factors

BTF status as of October 17th 2018

Expect to resume beam operations in December 2018

Thank you for your attention!

