EHzürich

Constrained multi-objective shape optimization of superconducting RF cavities to counteract dangerous higher order modes

M. Kranjčević, P. Arbenz, ETH Zurich A. Adelmann, Paul Scherrer Institut (PSI) S. Gorgi Zadeh, U. van Rienen, University of Rostock

Shape optimization of RF cavities

- mainly optimized wrt. the properties of the fundamental mode¹

¹V. Shemelin, S. Gorgi Zadeh, J. Heller and U. van Rienen, Systematical study on superconducting radio frequency elliptic cavity shapes applicable to future high energy accelerators and energy recovery linacs, Phys. Rev. Accel. Beams 19, 2016. https://doi.org/10.1103/PhysRevAccelBeams.19.102002

Future Circular Collider (FCC)

FCC-ee²

- circular lepton collider
- 100 km circumference, Geneva
- Z operating mode (FCC-ee-Z) (single-cell, Nb/Cu, 400.79 MHz)

²S. Gorgi Zadeh, R. Calag, F. Gerigk and U. van Rienen, FCC-ee Hybrid RF Scheme, In Proceedings of IPAC2018, Vancouver, BC, Canada, 2018. https://doi.org/10.18429/JACoW-IPAC2018-M0PMF036

Single-cell elliptical cavity parameterization

• axisymmetric, variables R_i , L, A, B, a, b, $(R_{eq}) \rightarrow \alpha$

DINFK

EHzürich

Constrained multi-objective optimization problem

· monopole and dipole modes major sources of beam instability

$$\min_{\substack{R_{i},L,A,B,a,b}} (f_{0} - f_{1}, |f_{1} - f_{2}|, \frac{F_{3}}{Q_{\perp 1}} + \frac{F_{4}}{Q_{\perp 2}}, -G_{0} \cdot \frac{F_{4}}{Q_{0}}),$$

subject to $f_{0} = 400.79 \text{ MHz}, \quad \alpha \ge 90^{\circ}$

- f₀ ... frequency of the fundamental mode
- *f*₁, *f*₂ ... frequency of the first and second dipole mode, resp.
- $\frac{R}{Q_{\perp}}$... transverse shunt impedance for the dipole modes³
- G₀ ... geometry factor ⁴

⁴J. Sekutowicz et al., Cavities for JLAB's 12 GEV Upgrade, In Proceedings of PAC2003, Portland, OR, USA, 2003. https://doi.org/10.1109/PAC.2003.1289717

³ B. P. Xiao et al., Higher Order Mode Filter Design for Double Quarter Wave Crab Cavity for the LHC High Luminosity Upgrade, In Proceedings of IPAC2015, Richmond, VA, USA, 2015. https://doi.org/10.18429/JACoW-IPAC2015-WEPWI059

Forward solver

- · Maxwell's equations
 - frequency domain
 - axisymmetric domain in 3D^{5,6}
 - vacuum; no external fields, sources or charges; PEC
- FEM \rightarrow a GEVP for each azimuthal mode number $m \in \mathbb{N}_0$
- smallest eigenpair for (using half of the cross section)
 - m = 0, PEC \rightarrow properties of the fundamental mode (TM₀₁₀)
 - m = 1, PEC \rightarrow properties of the dipole mode TM₁₁₀
 - m = 1, PMC \rightarrow properties of the dipole mode TE₁₁₁

⁵P. Arbenz, O. Chinellato, On solving complex-symmetric eigenvalue problems arising in the design of axisymmetric VCSEL devices, Appl. Numer. Math. 58 (4): 381-394, 2008. https://doi.org/10.1016/j.apnum.2007.01.019

⁶O. Chinellato, The complex-symmetric Jacobi–Davidson algorithm and its application to the computation of some resonance frequencies of anisotropic lossy axisymmetric cavities, ETH Zurich (Diss. ETH No. 16243), 2005. https://doi.org/10.3929/ethz-a-005067691

Pareto optimality

Definition

A point $d_1 = (R_{i,1}, L_1, A_1, B_1, a_1, b_1)$ dominates d_2 if

$$\forall i \in \{1, ..., 4\}, \quad F_i(d_1) \le F_i(d_2) \text{ and}$$

 $\exists i \in \{1, ..., 4\}, \quad F_i(d_1) < F_i(d_2).$

Definition

A point **d** is Pareto optimal if it is not dominated by any other point.

Evolutionary algorithm (EA)

- evaluate a random population of individuals I_i , i = 1, ..., N
- · for a predetermined number of generations do
 - <u>variator</u>: for pairs of individuals *I_i*, *I_{i+1}*, perform:
 crossover(*I_i*, *I_{i+1}*), *mutation*(*I_i*), *mutation*(*I_{i+1}*)
 - evaluate new individuals
 - selector: choose N fittest individuals for the next generation
- massively parallel implementation⁷ also used in OPAL
- combined with the axisymmetric Maxwell eigensolver⁸

⁷ Y. Ineichen et al., A fast and scalable low dimensional solver for charged particle dynamics in large particle accelerators, Comput. Sci. Res. Dev. 28 (2) (2013) 185-192. https://doi.org/10.1007/s00450-012-0216-2

⁸M. Kranjčević, A. Adelmann, P. Arbenz, A. Citterio and L. Stingelin, Multi-objective shape optimization of radio frequency cavities using an evolutionary algorithm, ArXiv e-prints arXiv:1810.02990, 2018.

Constraint handling

- *f*₀ = 400.79 MHz
 - given $d = (R_i, L, A, B, a, b)$, find R_{eq} s.t. $f_0 = 400.79$ MHz
 - root-finding method⁹on (in mm) [325, 375]
 - if $|f_0 400.79 \text{ MHz}| \ge 1 \text{ MHz}$, fine mesh eigensolve avoided (on average, 4 fine eigensolves for each *d*)
- $\alpha \ge 90^{\circ}$... otherwise, the individual is discarded

⁹G. E. Alefeld, F. A. Potra and Y. Shi, Algorithm 748: Enclosing Zeros of Continuous Functions, ACM Trans. Math. Softw. 21 (3) (1995) 327-344. https://doi.org/10.1145/210089.210111

Results

• Euler cluster¹⁰ (Euler I and II) of ETH Zurich

FORWARD SOLVE:

- coarse eigensolves ... 10'000 triangles, 2s
- fine eigensolves ... 300'000 triangles, 90s
 (24s meshing, 64s eigenpairs, 2s objective function values)
- 4 fine eigensolves to find R_{eq} and the properties of TM₀₁₀
- 2 fine eigensolves to find the properties of TM₁₁₀ and TE₁₁₁ (no remeshing)

¹⁰ https://scicomp.ethz.ch/wiki/Euler

Results

OPTIMIZATION:

- 13h for 50 generations with N = 100 on 96 processes
 (30% of the individuals discarded)
- initial design variable bounds:

Variable	Ri	L	Α	В	а	b
Lower bound [mm]	145	120	40	40	10	10
Upper bound [mm]	160	190	140	140	70	70

ETHzürich

DINFK

October 23, 2018 12

ETH zürich

Fundamental mode of the chosen RF cavity

DINFK

Description of the chosen RF cavity

Variable	<i>Ri</i> [mm]	<i>L</i> [mm]	A [mm]	<i>B</i> [mm]
Value	141.614	146.270	103.54	127.521
Variable	<i>a</i> [mm]	<i>b</i> [mm]	R _{eq} [mm]	α [°]
Value	41.921	45.812	339.166	91.697
Objective	<i>F</i> ₁ [MHz]	<i>F</i> ₂ [MHz]	<i>F</i> ₃ [Ω]	$F_4 [\Omega^2]$
Value	-147.03	0.40	36.3	-2.13e3

TM ₀₁₀	$f_0 = 400.79 \text{ MHz}$	$R/Q_0 = 94.9 \ \Omega$
	$E_{pk}/E_{acc} = 1.92$	B_{pk}/E_{acc} = 4.16 mT/(MV/m)
TE ₁₁₁	$f_1 = 547.82 \text{ MHz}$	$R/Q_{\perp 1}$ = 5.10 Ω
TM ₁₁₀	$f_2 = 548.22 \text{ MHz}$	$R/Q_{\perp 2}$ = 31.2 Ω

Conclusions

- optimized the shape of the superconducting RF cavity for the FCC-ee-Z wrt. the fundamental mode and the first dipole band
- new optimization algorithm
 - EA + constraint handling
 - other axisymmetric RF structures
 - HOMs corresponding to arbitrary azimuthal mode numbers

Acknowledgements

This research was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the project RI 814/29-1.

The computations were executed on the Euler compute cluster of ETH Zurich at the expense of a Paul Scherrer Institut (PSI) grant.