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Outline

= FRIB driver linac status
» Simulations of multi-charge ion beam acceleration
* Physics application development and use
* Virtual accelerator (FLAME, IMPACT and TRACK)
* Model driven accelerator
» Include actual misalignments and field maps
» First beam acceleration in FRIB
» ECR simulations
= Bayesian statistics for accelerator tuning

= Computational needs for FRIB
» Gas stripper
» On-line determination of reference trajectory in fragment separators
* LISE**

» Rare Isotope Beam Preparation for Post-Acceleration
» Gas cell,
» RFQ CB
» MR-TOF
» EBIS
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Faculty for Rare Isotope Beams

= Currently is being commissioned with beam
» First operation for physics experiments is planned in 2022

ECR lon Sources
Room Temperature RFQ Accelerator

=0.041 Quarter Wave Resonators
3=0.085 Quarter Wave Resonators

Target Beam Delivery System

- Superconducting Bend

=0.53 Half Wave Resonators

3=0.29 Half Wave Resonators

Cryogenic Distribution Line
CW heavy ion linac
Charge Stipper 316 superconducting resonators
in 46 cryomodules
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FRIB Beam Dynamics Challenges for Multi-Charge-State
Simultaneous Acceleration and Transport

= [ attice with large acceptance
« Accommodate mismatch and offset among the charge states
= Manipulation of phase space
* Prebuncher, velocity equalizer and HV platform scheme at LEBT
= Achromatic and isochronous bending optics design
* Reduce emittance growth in both transverse and longitudinal planes
= Superimposition of multi-charge states at critical locations
* Minimize emittance growth on charge stripper
» Achieve small beam size on target
» Three optimization and simulation codes are in use at FRIB:

 FLAME - Fast Linear Accelerator Modeling Engine, developed at FRIB/MSU

» Matrix-based

» High level python wrapper and API available for convenient work flow control and interface to
high level control system

* IMPACT - PIC code, developed in LBNL
» In the development network, will be available in production network

« TRACK - PIC code, developed at ANL/MSU
» Off-line, will be available in production network
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Beam Evaluation Results with Machine Errors

» IMPACT and TRACK simulations, multi-particle, multi-seed

= Beam envelope growth (within aperture) mainly due to misalignment
» Steering correctors turned on
» RF errors cause significant longitudinal emittance growth but not coupled into
transverse

= No uncontrolled beam losses observed
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Transverse Beam Size and Emittance along LS1

» Two charge states (U33+ & U34+) reasonably overlapped
* Very similar transverse dynamics
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Longitudinal Overlap of 2q Beam at LS1 Exit

» Longitudinal oscillation of two-charge-state beam along Segment 1
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» Phase of cavities are adjusted for the overlap of the two-charge-state beam at
the exit of Segment 1 by measuring the timing of each charge state beam
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Uranium Beam Distributions at Li Stripper

» U33+ and U34+ at the input of stripper
e Small beam size and short bunch lenath achieved
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= Multi-charge state distribution at the output of stripper
» 85% beam in 5 charge states (from U76+ to U80+)
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Five-charge-state Uranium Beam on Target

» The last critical point for FRIB Linac is beam tuning into the target.
* 90% of beam within 1 mm diameter.
« Beam on-target position should be adjustable within +/- 3 mm range.

» Studies have been performed to ensure these requirements can be met with
baseline beam diagnostics and realistic errors
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Physics High-level Controls

= Physics High-level Applications and Toolkit for Accelerator System (pHanTasy)
« Python 2.7 and 3.x, Jupyter-notebook scripting environment
 Accelerator/device abstraction to full object-oriented programming environment
* Online modeling: FLAME, IMPACT, TRACK, etc.
« Virtual accelerator based on EPICS control environment
» Virtual accelerator model is being continuously updated
« Web service integration (channelfinder, unicorn, scanserver, etc.)
« PyQt GUI applications built upon this framework
« Automatic deployment with Debian packages

Scripts/Console Apps GUI Apps

| d
Jupyter Notebooks ~ PyQt5 + Qt-designer | packoges for donioym

packages for deployment

0

|
|
|
|
|
|
|
I Test against FRIB accelerator
|
|
|
|
|
|

Model Engines Web Services 10Cs

(FLAME, IMPACT, TRACK) (units conversion) (func, data)

Middle Layer (Python)

0

Develop tuning algorithms
against virtual accelerator

PHANTASY

Virtual Accelerators
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Physics Applications: Central Trajectory
Correction

= Correct the beam central trajectory at each BPM using steering magnets
» 4D problem due to focusing with solenoids
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FRIB Tunnel is Being Filled with
Cryomodules

» LS1 cryomodule production is finished

» Module production rate is steady at one per month in the past 12 month

» | S2, LS3 installation is ongomg in the tunnel

= On track to - W=t
complete all
cryomodule
assembly work by
the end of 2019

i
VG

Bp=0.53 HWR coldmass assembly on-gomg
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First Experience with On-line Beam Tuning:

Front End and Three Cryomodules

» Front End including 500 keV/u RFQ and MEBT
» Three cryomodules of B5p7t=0.041 SC cavities: 12 cavities and 6 solenoids
= Diagnostics station
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Acceleration of 33 uA Argon Beam to 1.5 MeV/u

= 33 UA Ar?* accelerated to 1.5 MeV/u with 30% duty factor
= Can produce 38 kW on target if accelerated to the design energy in CW mode
» 3 msec pulse at 100 Hz repetition rate. MPS was activated using differential

signals from BCMs

= “Halo monitor rings” (HMR) were used as Faraday Cups for “quick” beam

tuning during the phase scan:
no beam losses after tuning
= No beam losses observed
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Beam Measurement Results

Argon beam energy after each cavity
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Beam Dynamics in Electron Cyclotron

Resonance lon Source

» Plasma, strong magnetic field, RF heating, ionization, recombination,...
= There are no simulation codes which include all processes in an ECR

= V. Mironov (Dubna): PIC simulations, ionization assumes that electrons do
not move and create background

= V. Toivanen (CERN): magnetic field, space charge, plasma potential,
extraction

= V. Skalyga, I. Izotov, IAP,
Nizhny Novgorod,

O.Tarvainen, Jyvaskyla [2008-
2017]

» P. Spadtke (GSI). RSI, 89.
Simulation with KOBRA-3 in
external magnetic field

ECR Resonance
—(Zce - qg/me :-QHF

B

ny

b
B exT|
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FRIB ECR

= Simulation of ion beam extraction from ECR using CST Particle Studio

» Simulation starts from the plasma surface

* Includes 3D fields and space charge of ions outside the plasma
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Simulated Initial ECR Beam Distribution with
Mironov’s Code

» ECR produces very complicated beam distribution
« Angular momentum due to strong axial magnetic field
* Multiple ion beams, multiple charge states
« Complex configuration of the magnetic field

= So far we can fit only rms All Ar8*ions on plasma electrode plane

1000

parameters to some a1 &
general distribution in o nE N
simulation codes £ o SO =
(Waterbag, Gaussian,...) ™= =7 |* o JL w3}
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 Further beam studies are .- a0 /RIS ,,
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Comparison of Measured and Simulated
Beam Images for Ar®*

Ar®* beam 20 epA (20170828 _90% transmission just before RFQ)

Perspective image Perspective image Perspective image
(right-hand coordinate) 30 (right-hand coordinate) 30 (right-hand coordinate)

30

20 20

10 10 10
€ € ‘e
E 0 E E 0
> > >
-10 -10 -10

-20

49 - . 30 % - - 30 3% 20 10 0 10 -20 -30
X [mm] X [mm] X [mm]

30 30 . .
W 0.0105
20 20 20
0.0090
M
10 A 10+ L i 10 0.0075
— —_ — .
g g £ 0.0060
g o g of g o £
> - . 0.0045 =
10 -10 10
(‘f", . 0.0030
20 1 -20 -20
D739 D812 D976 g
-30 -30 . . -30
30 20 10 0 10 -20  -30 30 20 10 0 10 -20  -30 30 20 10 o 10 -20 30
x [mm] x [mm] x [mm]

N

$ ) Facility for Rare Isotope Beams
FR I B 1 U.S. Department of Energy Office of Science
\i ’ Michigan State University P.N. Ostroumov, ICAP-18, October 20-24, Key West, Florida, Slide 21



Hollow lon Beam in LEBT with CST PS

= After the extraction, ion species with different M/Q are focused differently by a
beamline solenoid. It results in a highly non-linear space-charge forces

producing the aberrations. For example, these forces can create the hollow
beam downstream the solenoid.

* This hollow beam is formed due to the space-charge forces from higher

charge states which’s focus is loacted upstream and a spherical aberration
from the solenoid.
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Magnetized Beam from ECR

» |n Cartesian coordinate system the presence of non-zero angular momentum
of beam particles appears as a tilt of a phase-space is XY’ and YX’ plane.
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Bayesian Statistics for Accelerator Tuning

= Motivation: = Expectations from Bayesian method
« Some parameters in  Provide statistics information on reliability
accelerator can not be  Better scaling to high dimensional problem
measured directly « Less local minimum problem
* These parameter can be « Suggest the future experiment

used in accelerator model to
predict the machine

* Fitting the model to the
measured data using t } m
optimizers - Optimization, tuning

» Only results are given,

how reliable? Megsured da}ta L Physics Model J
* DBeéam position, Parameters in Model:
» Eﬁnﬁl}?n bper(?;grenlocal :ntensity, energy and
: oss count + Beam parameters u
» Hard to scale to hlgh « Readback of settings « Element locations
dimensional problem » Environment data - Machine settings
» Depend on the definition (temp, pressure, « E-/B- Field Profiles
of the penalty function e T

Question:
How statistics can help us to tune the
machine, if it is a better option?

Y. Hao
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Example of Using Bayesian Statistics to Find
Beam Sigma-Matrix

= Beam image is taken with upstream quadrupoles’ scan in wide range

= We measure o, = (0, )l , 1 is the number of measurements at
different setting of machlne (quads) V=(v,, vy, ..., V,)

= We need to find 0 = (e, Bz, Oz, €y, By, Qys Cays Cay?» Caryy Caryr ) UPStream
of the quadrupoles

__Model _ | J

Omodel — f(va (9) Omeasure = Omodel 1 55

= randn();0 = (04, 0,, 0,
Bayesian Theorem § 0 ( ys Oy)

P((o1,V1),-++ (05, V3), -+ 1 0,0) P(6,9)
P((o1,V1),- - ,(aZ,V),...)

P(Q75‘(01,V1),... ,<O'i,‘/;-)7...) =

The likelihood

P (a1, Vi), (04, Vi), -~ | 6,6) HP i, Vi) | 0,9)
N H 1 oxD — (Umeasure - Umodel)Q

| Uniform / Gaussian / beta prime distributions |
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Quad Scan, Results Comparison

= We implemented the Metropolis-Hasting method in Python to sample the
posterior distribution.

* The in-house linear model, FLAME, as the accelerator model. The linear
model is fast enough to get converged result in ~103 seconds on laptop.

Results using Bayesian Inference Results using optimizer
8 —— Horizonal beamsize b 8 —— Horizonal beamsize 4
—— Vertical beamsize —— Vertical beamsize
L]

—— Correlation —— Correlation

[=2]
[=2]

N
N

[hS]

[\%]
Normalized measurement values

Normalized measurement values

[=
[=

" ot Messurment " ot Messurment

BRSBTS l-----
[mm-mrad] [mMm-mrad] | [m] Cxy

Bayesian 0.104 276 -2.38 0.049 1.37 -0.31 0.26 0.63 -0.08 0.51

Optimizer 0.119 276 -2.26 0.05 1.51 -0.42 0.34 0.26 -0.06 0.01
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Helium Gas Stripper
= A backup option for FRIB | '

= Technically feasible
= Drawback: differential pumping

= Using various available codes we can
calculate:
* Energy loss and straggling, roughly
* Prediction of charge states

» There is no comprehensive model of
high power heavy ion beam interaction
with gas
» Gas heating and expansion
» Higher accuracy of energy loss

» Optimize gas pressure as a function of
beam energy Gas
» Charge exchange

velocity

Beam
spot

a Facility for Rare
U.S. Department of Energy Office of Scienc
m Michigan State University

Courtesy of H. Okuno, F. Marti
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FRIB Fragment Separators

= Design optimization up to 5" order using COSY INFINITY
* http://bt.pa.msu.edu/index_cosy.htm
» Monte Carlo simulations of benchmark examples: COSY and LISE**
* http://lise.nscl.msu.edu
= Next step is development of on-line tuning algorithms, possibly using stable
beams
» Main task is to find a reference trajectory to be able to apply COSY settings

Courtesy M. Hausmann and M. Portillo
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FRIB Secondary Beams

= 5t order optimization is required due to
» Reactions in the target increase the emittance significantly
 Large aperture magnets
» Large momentum acceptance of the fragment separators

» Reference trajectory

* Different species with very similar Bp can be very close to each other spatially (few
mm) at the location of the slits.

« Since the fragment of interest may be much weaker than others, one needs particle-
ID for successful tuning

 Large scale calculations would be necessary for quick set-up of the experiment

F R I B a Facility for Rare Isotope Beams
.S. Depa fE Offi f Sci
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The code simulates nuclear physics
experiments where fragments are T e O e | e
produced then selected with a % o v | =
SpeCtrometer ’§<;uad> Zum?m 0748 Move slement R ‘ e T ‘
« Tune separator, % s ot E T |
° Fragment pI’OdUCtIOI’\, . . %z&:}am :uEzETc 0054238 . o o Optcal
* Transmission and purity calculation, I e B - T
. . . D] Dipoe D1 0 243 + —
* Visualization of fragment En o : e B R
. . . . 4 o |dit 030 0364 operations Wien velocity fiter Beam Rotation
distributions calculation results. B0l aws  amma = | - |
’Edmt 2032 0136 W Electrostatic dipole ‘ Shift of Optical Ads
m ZQDD;jTB E?;é ? e GEl| Gasflled separator ‘ L} Solenoid ‘
Optical matrices can be input by e ST =
user, Iinked to COSY mapS (up to 5th Ensble W [ Drift [multipale, slts) NEEEE'SDF [ dspersive RF based [nobeamd?r?:ﬂiilschanges]
1 e cal auiomaticaly plocktengthlr b ’T K RF separator Z Delay (efficiency) block
order) or calculated in the LISE++ i e ||| ([EEL weee | o e
Code (up to 2nd Order) Sequencenumber‘ 7 | T RF buncher ‘ Fitting constraints

Calculation transmission methods:
« Fast analytical
* Detailed Monte Carlo analysis

LISE**: Exotic Beam Production with
Fragment-Separators and their Design

Main features:
Current status:
Plans:

LISE** website:

O.B. Tarasov, D. Bazin, NIM B 266 (2008) 4657
O.B. Tarasov, D. Bazin, NIM B 376 (2016) 185.
M.P. Kuchera, et al., NIM B 376 (2016) 168.

http://lise.nscl.msu.edu

Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science
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Each Isotope Tuning Requires Optimization

» L arge scale computing is for the optimization of the fragment separator setting
for particular isotope including wedges, slits and TOF mass separation
 Calculate a lot of particles before we can get sufficient statistics on the one of interest

* Parallel COSY is available

* LISE** needs to be moved to a
modern framework with new
compilers and parallelized

In the pre-separator (up to label
“CB_obj”), the bending plane is
vertical, while it is horizontal
downstream of this point. The
gray and light blue rectangles in
the background represent the
apertures of the focusing and
bending magnets, respectively.

Y [mm]

X [mm)]

Courtesy M. Hausmann and M. Portillo

@‘ Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science
@ Michigan State University
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Rare Isotope Beam Preparation for Post-
Acceleration

= Helium gas cell
= RFQ cooler-buncher

= Multi-Reflection Time- Moanat
of-Flight Mass Sector

ReA post-accelerator

2 < A/Q <4 FC/DC 4 12 keV/u 600 keV/u ~ up to 6 MeV/u

MHB # RT RFQ +C1M+ C_L')V‘+ Cg‘ —

Separator (MR-TOF) SRF LINAC
FC/DC 3
Achromatic
Q@/A separator E B I S
\ FC2
Electrostatic 12 keV/u l_ EBIT
sector <
K 1+ > O+
< 60 keV
FC/DC 1
Beam cooler buncher (BCB)
Production & In-flight separation < 60 ke\J
Cﬁntinupus I:z:.trzll:lle Dl
eavy ion beam He-gas cell
>80 MeV/u => g
Thermalized-beam area
Target
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Electron Beam lon Source or TRAP (EBIST)

= High current, low energy electron beam, up to 20 A
* Magnetized or electrostatic electron gun

» 6 Tesla solenoid; stripping of ions by electron impact
= Existing EBIS computer models use simplifications
= Limitations: electron jj

beam losses

= Effect of secondary i i
electrons M

= Emittance and time
structure of the

i
|

extracted ion beam  IE@ ] ~ B = |

= Transmission efficienc | [ AT o N =t e
of ions =

= Electron gun IE jﬂlz
optimization to reduce Al

charge breeding time,
increase charge
capacity 1

Facility for Rare Isotope Beams

F I 2 éc
1S f Offi f Sci
IB Q,@ Tl R P.N. Ostroumov, ICAP-18, October 20-24, Key West, Florida, Slide 33



Further Development of Simulation Codes is
Required

= Helium gas stripper
» 6D beam dynamics
» Radioactive ion beam collisions with helium gas
» Charge exchange
* lon beam space charge

= RFQ cooler-buncher
* 6D beam dynamics
« Radioactive ion beam cooling due to collisions with helium gas
 lon beam space charge
» Charge exchange

= LISE*

* Plans for performance and model improvements in the LISE** software
Nuclear Instruments and Methods in Physics Research B 376 (2016) 168-170

Facility for Rare Isotope Beams
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Conclusion

= Design of accelerator and experimental systems is complete
 Reliable set of computational codes exists

» Focus on development of on-line physics applications and update of the virtual
accelerator model

» Fast parallel codes are required for simulation of rare isotope production,
transport and separation

= On-line tuning of fragment separators: development of physics applications is
required

* New codes are required for simulation and optimization of FRIB systems to
prepare rare isotope beams for post-acceleration
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