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Introduction and Motivation

* Interest has grown in variational (Lagrangian) or “multi-symplectic” (Hamiltonian)
algorithms that preserve the geometric properties of the collective self-consistent

equations of motion for plasmas?! or beams?2.

* Do such algorithms exhibit a non-physical increase in phase space volume due to
the presence of numerical errors? If the physical system possesses one or more
dynamical invariants, does the numerical system possess “nearby” invariants?

* Models of numerical emittance growth often treat this effect as a form of
collisional Coulomb scattering. Grid heating (for PIC algorithms) significantly
complicates this picture.

* Symplectic gridless spectral solvers? are sufficiently simple that perhaps numerical
noise and its contribution to emittance growth can be understood in more

complete detail.

[1] B. Shadwick et al, Physics of Plasmas 21, 055708 (2014), S. Webb, Plasma Phys. Control. Fusion 58, 034007 (2016),
[2] J. Qiang, Phys Rev. AB 20 014203 (2017), previous talks by Thomas Planche and Paul Jung.
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Numerical Hamiltonian of a coasting beam with space

charge + external focusing (using particles and modes)

Assume that the collective Hamiltonian of the N -particle system is given as the sum of a
contribution due to external fields and a contribution due to space charge:

N no1 A
H = ZHeXt(f},ﬁj, — F§Y§‘S‘_el Tj €] Tk)
j=1 j=1 k=1 =1

All quantities are computed in the laboratory frame. Each numerical step in the path
length coordinate s is obtained by applying a second-order operator splitting to H.

Eigenmodes of the Laplacian
() bounded domain (1-2D) 2

ep = Ne € =0 (N <0
€, )\l Ith mode and eigenvalue Ve L= l’ém

Np number of particles
N, number of modes

n space charge intensity M(T) = Mext(T/2) Mg (T) Mexi (7/2) + O(79)

Symplectic map for a single step:

J. Qiang, Phys. Rev. ST Accel. Beams 20, 014203 (2017). E=Xej ACCELERATOR TECHNOLOGY & q T ﬁ
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Numerical Hamiltonian of a coasting beam with space

charge + external focusing (using particles and modes)

Assume that the collective Hamiltonian of the N -particle system is given as the sum of a
contribution due to external fields and a contribution due to space charge:

Ny Ny, Np N,

H= Heulf,55,5) - NﬁéYYY—el (7)en(7)

j=1 1=1 k=1 1[1=1

Thus, each particle moves in response to the smooth space charge potential and force:

N, N; Np
= n 1 _,
- —— E E _el el 743 F(,r) — F § : z :A_el(r])vel(r)
P =1 j= 1 P =1 j=1""

n —
whete VU = —p, Ulpg =0, p=-> > alil).
p .

J. Qiang, Phys. Rev. ST Accel. Beams 20, 014203 (2017). 2R ACCELERATOR TECHNOLOGY & \)
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Probabilistic model of computed field error
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Statistical properties of the system of particles

Suppose we sample the smooth beam phase space denS|ty P using N, macroparticles.
The macroparticle coordinates {(7;,p;) : 7 =1,2,..., N, } are treated as L.i.d. random
variables described by the probability density P on the smgle particle phase space.

More precisely, the full beam is (initially) described by the joint probability density:
PN(Flaﬁla R 7FNp7ﬁNp) — P(Flaﬁl)P(’Fé?ﬁQ) JER P(/FNpaﬁNp)

Given a function a on the single-particle phase space, we denote its beam average:

1 ~— .. .
:Fp;a(rj,pj) Aa,:a—<a,>

Given functions F and G defined on the N -particle phase space (depending on all
particle coordinates within the beam), we define statistics with respect to P, :

B[P — / FdPy,  Cov|F.G| = E[FG| — B[F|E[G]

7% U.S. DEPARTMENT OF Office of j
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Statistical properties of the density and computed field

We may now evaluate the statistical properties of the various modes of the (spatial)
beam density. Here 5,0 = P — Pexact - It follows that the first and second moments
of the mode coefficients of 0 p are given by:

n2

E[6p'] = 0, Cov[dp', 6p™] = N Covler, em]

p

This allows us to evaluate thg stat[§ticaLmoments of the error in the various modes of
the computed field. Here 0F' = F' — F ...t - The second moments are given by:

1 2
E[§F'6F™] = N, \/;Tm Covler, em] (I,m < N;) (modes below cutoff)
2
E[§F'6F™] = ;L)\ Ele;] Ele,,] (I,m > N;)  (modes above cutoff)
[Am
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1D Example: Errors in the Spectral and Spatial Domains

for a parabolic beam distribution

RMS error vs. mode number RMS error vs. position
1\211/2
BlOE ) BlJ3F () )1/ |
: conducting
0.012} e boundary

/,

N, = 1000, N; =9 2ot

0.008¢}
0.006} density

0.004

10 15 20 X

particle noise only  truncation error only « Absolute error is largest in the beam core.
* Gibbs ringing near the edges of the beam.

00 02 04 06 08 1.0

— Analytical prediction of the rms error in the computed field
-=-= Statistically computed rms field error using 200 random seeds
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Expected L2 norm of the field error and its minimization

The mean-squared value of the L2 norm of the error over the domain 2 is given by:

nz
[HéFH = —— E ~ Var leg] g = E[el]2
Pies 1gs l
\ J ,
|
partlcle noise truncation error
RMS error vs. number of particles RMS error vs. number of modes
o 0.025} S o
= 0.020" = el
— Ny =9 il N, = 1000
NE 0.015! a_ 0012 p
r. 0.010
g 0.010} %
—— 0.005; — 0.008} optimum
- ‘ ‘ ‘ ‘ - N M 0.006!
0 200 400 600 800 1000 P — N,
0 5 10 15 20
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Expected L2 norm of the field error and its minimization

The mean-squared value of the L2 norm of the error over the domain 2 is given by:

2

E[||6F||?] = — — § a Var ] = Y S Elel]?
)\l >\l
‘ P les | l¢5
J
partlcle noise trunca'tion error

 Here S denotes the set of indices for all numerically computed modes.
« Every mode contribution is nonnegative, and the L2 error is globally optimized when
we enforce the condition that [ € .S if and only if:

E[(0F")?]  Var[ép'] 1 Varle]

— — <
(]_ﬂ:x:act)2 (plexact)2 Np E[el]Q -

« A tighter condition on the variance of computed modes helps with emittance growth?.




Analysis of emittance growth on a single step
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Change in RMS emittance after a single space charge step

A single space charge kick of step size 7 of the form (ZB, p) — (x, D+ TF(x))
induces a change of RMS emittance given exactly by:

62—6(2):27A—|—7'QB where

_g?z?-“-'"-’»f_-.‘ U.S. DEPARTMENT OF Office of \\
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Change in RMS emittance after a single space charge step

A single space charge kick of step size 7 of the form (CE, p) — (x, D+ TF(x))
induces a change of RMS emittance given exactly by:

62—6(2):27A—|—7'2B where

A = (Ax*)(ApAF) — (AzAp)(AzAF) = (Az?)(Ap,AF,)

measures the size of nonlinear correlations between p and F variable sign

Here F, and p, denote F and p after subtracting linear correlations with x.
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Change in RMS emittance after a single space charge step

A single space charge kick of step size 7 of the form (CE, p) — (x, D+ TF(x))
induces a change of RMS emittance given exactly by:

62—6(2):27A—|—7'2B where

A = (Ax*)(ApAF) — (AzAp)(AzAF) = (Az?)(Ap,AF,)
measures the size of nonlinear correlations between p and F variable sign
B = (Az?)(AF?) — (AzAF)” = (Az?)(AF2) [ aiways

measures the size of the nonlinear part of F nonnegative

Here F, and p, denote F and p after subtracting linear correlations with x.
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Statistical properties of emittance change after a single

space charge step (1)

Our probabilistic model gives the statistics of A and B as sums over spectral modes:

Ny n N; n2
E[A] = Z )\_lAl , Var[A] = Z W Alm ,
=1 I,m=1 m
al n’ l Al n’ Iml'm’
E[B] = Z = B™  Var[B] = Z YT -BB
Lom=1 " L7m Lom,l m/=1 " tm A Am

A' = Var[z] Cov[p, e]] E[e;] | Alm =

B'™ = Var[z] Covle}, e/ 1 E[e;]] Elen,] .  Bi™'™ —

* i i i : \CCELERATOR TECHNOLOGY & ‘\\)
after removing linear correlations of p and e, with x YA ATAP)




Statistical properties of emittance change after a single

space charge step (2)

When we include corrections through order 1/N,, we introduce the effects of
particle noise. Term A is simple when p and x have no nonlinear correlation:

E[A] =0 Var[A] = Nip Var[z] Var|p| B[B] .

Term B is quite complicated, but can be determined via computer algebra. For example:

1
Blm _ 1 Blm Tlm Tml

Tl,m _
Var[x] Covle, €. | Covley, e,,] — 3 Var[z] Covle;, e, | E[e;] Elen,]
+ 2 Cov[z?, ¢;] Covle}, €. 1 Elen| + 2 Var[z] Covieje., , e;] E[en]
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Statistical properties of emittance change after a single

space charge step (2)

When we include corrections through order 1/N,, we introduce the effects of
particle noise. Term A is simple when p and x have no nonlinear correlation:

E[A] =0 Var[A] = Nip Var[z] Var|p| B[B] .

Term B is quite complicated, but can be determined via computer algebra. For example:

1
i Blm Tlm Tml
Nplinoo * 2Np( + ) ’

Tl,m _

Blm

+ 2 Cov[z?, ¢;] Covle}, €. 1 Elen| + 2 Var[z] Covieje., , e;] E[en]

This result is consistent with that of Kesting?! if we keep only the first term.

[1] F. Kesting and G. Franchetti, PRAB 18, 114201 (2015). [iastmainkitiivicdblla W B4 | F)))
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Statistical properties of excess emittance growth on a

single numerical step (uniform beam w/ x-p correlation)

1D uniform beam using 15 spectral modes, using 1M random seeds

termA term B
2 2
(Az”)(ApAF) — (AzAp)(AzAF) (AZ?Y(AF?) — (AzAF)
180000 : ' ' ' i '
160000| | | — 1K particles S00000F — 1K partic.les
2 — 10K particles > — 10K particles
‘% 140000} — 100K particles |{ ‘@ 220000} — 100K particles
& Expected value and S
D 120000} .- @ 1
© variance correctly © 200000 - g X
_.E‘ 100000 predicted. .E‘ \/ﬁp
Fel ‘5 150000}
g 80000 1 _cg Expected value is shifted
n% 60000 | A o X —— g 1000001 i due to particle noise:
40000} il vV AVp AE[B] 1
L —_ X —
20000 | 50000 N.
0 T .
-0.0001  -5e-05 0 5e-05  0.0001 2505 0 2605 4005 66.05 86:05 0.0001
difference from smooth distribution value difference from smooth distribution value
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Numerical emittance growth in a FODO channel
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Matched KV Beam in a FODO Channel

1 GeV proton beam, 100 A current Initial rms emittance: 1 pym
Zero current phase advance: 87° 2D domain: [0,6.5] % [0,6.5] mm
Depressed phase advance: 74° Number of modes: 15 x 15
Evolution of 4D emittance /€ €y Emittance fluctuation (rms) vs. N,
0.5 . . .
Q) — N, =1K 0.03 _
S04 — N, = 2K T N, ©
= .| = N, =5K 0.02 k 1
= * — N, =10K L3
(@) 0.3+ i .
= — N, = 20K {43 001 TN
Do.2k 0 ‘ —
% | 0 20000 40000 60000 /V. D
= 0.1
& . .
S * Emittance is well-preserved.
é’ * Fluctuations scale w/power oc = (.57
§-0-1  Based on model of a single step:
925 20000 40000 60000 80000 100000 OAe X Var[A]l/ 2 x
Number of periods v Np

~
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Matched Gaussian Beam in a FODO Channel

1 GeV proton beam, 100 A current Initial rms emittance: 1 pym
Zero current phase advance: 87° 2D domain: [0,6.5] % [0,6.5] mm
Depressed phase advance: 74° Number of modes: 32 x 32
Evolution of 4D emittance /€€y * Emittance growth rate IV, g
4 « Emittance fluctuations Np_o‘
Q
—3.5¢ 6 =0.996, o =0.58
2 3 - Based on model of a single step:
S} 2
25} de n
@ E|—| xEB| x —
c o| [ds} ] Ny
S -
‘S 1.5 —  Driven by collisional heat exchange
GE) I - y . &
o 1t R o _ N =95k | between degrees of freedom™:
= __ — N, = 50K < ,
Zos! — N, = 100K - s 1 T, —T
ohi — N, = 200K — = —kBﬁf( - )
T o dt 2 T,.T,

0 5000 10000 15000 20000 25000 30000 35000
Number of periods
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Conclusions

* The properties of “symplecticity” and “collisionlessness” in particle-based space charge
tracking codes are distinct.

* Symplecticity (in the N,-particle sense) eliminates non-Hamiltonian artifacts from the
numerical integrator, but does not imply that the system of macroparticles is
collisionless. Additional techniques (particle shapes, noise filtering) can be used.

* This symplectic spectral algorithm is simple enough that probabilistic models of the
numerical field error and emittance growth on a numerical step can be applied.

* Two emittance driving terms: A (drives fluctuations), B (hnonnegative, drives growth).

* A first-principles treatment of emittance growth due numerical collisions with
dynamics would take the complete approach:

Numerical N -particle Hamiltonian 5> BBGKY hierarchy i) kinetic equation (Vlasov-
Fokker-Planck-like) ms) moment equations (a la Struckmeier)

.,s U.S. DEPARTMENT OF Off f =
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Backup material

‘!{y “% U.S. DEPARTMENT OF Office of \\‘
(W)ENERGY | o2 apsieo prvsicsonision AN 1 AP




Spectral approach to the Poisson equation

on bounded domains

Let () be a bounded, open domain in Rd. Consider the Poisson eq. in the form:
There exists an orthonormal basis {el 0=1,2,.. } for the Hilbert space of

square-integrable functions on {) such that each €; is a smooth eigenfunction of
the Laplace operator:

2 —
Ve = Aey etlgpq =0 (A <0) .
We denote the coefficient of mode I of any square-integrable function f on {) as fl :

The following vector-valued functions can be extended to an orthonormal basis:

. 1
6l:mvel (121,2,)

The modes of {J and ' — — [/ satisfy: Ul = —pl/)\l , Fl = —\/—)\lUl ]




Benchmark: Expansion in a drift space of a cold uniform

cylinder beam with 2D transverse space charge

Beam size evolution Preservation of the N-particle Hamiltonian
T T - - - - 4.5

— hse/L = 0.0591
— hse/L = 0.0296
3.5¢ — hsc/L = 0.0148

41

251 125 SC kicks

~ O(1?)

Beam size (mm)

150
250 SC kicks

500 SC kicks
/. L L

doubling

Relative change in H x 106

0.5}
distance
10 % é é 4 é é % Oo 1 2 3 4 5 6 7
Distance (m) Distance (m)
KE =2.5MeV p 5D rect lar d _
Ry, = 3.905 mm rectangular domain Similar behavior for the beam

I=4.113 mA = (0,a) x (0,b) emittance evolution.
a=b=5cm
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Systematic removal of correlations with x

Note that term A and term B are each invariant under any transformation of the form:
xr—xr+c, p—pt+axr+b F—-F+gr+h

for any constants a, b, c, g, and h. It follows that we can replace x, p, and e, using

v=Blel+z, =B+ oo~ Ele) + b
i = Ble] + gyt (o~ Elel) + o

The final result is then made significantly simpler, since we may assume w.l.o.g. that:

E[lz] =0, E[p]=0, E[g] =0, Cov[z,p]=0, Covz,e;]=0

7% U.S. DEPARTMENT OF Office of j
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1)
-3)
3)

4)

step 1

o)
_6)
=)

8)

9)

step 2

Statistical analysis of emittance growth during two

numerical steps (numerical tests)

Randomly generate a beam consisting of particle data (x,p).

Take Y2 step in the external fields (here, a drift).

Compute space charge force F(x) at all particle locations using

the 1-D symplectic spectral algorithm.

Compute the statistical quantities appearing on Slide 2 (averaging
over the beam).

Take 1 full step in the space charge fields.

Take V2 step in the external fields (here, a drift).

Take Y2 step in the external fields (here, a drift).

Compute space charge force F(x) at all particle locations using

the 1-D symplectic spectral algorithm.

Compute the statistical quantities appearing on Slide 2 (averaging
over the beam). term A, term B

term A, term B
(kick 1)

10) Take 1 full step in the space charge fields. (kick 2)
_11) Take Y2 step in the external fields (here, a drift).
12) Repeat 1)-5) for N

<eeg distinct random seeds.

13) Compute statistical moments of quantities computed in 4)
and 9) (averaging over random seeds).

Eachstep: M(7) = Mept(7/2) Mo (T) Mzt (T/2) + O(TS)
DIENERGY |JT=o imammmnons ATA P))




Statistical correlations between two successive steps for

the Gaussian beam numerical example

Correlations between terms A and B - successive steps

Linear correlation coefficient

step size
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Choosing the Optimal Number of Modes (to Minimize

Norm of the Field Error) - 2D Example

Domain: €} = (0,a) X (0,a) a
0 4_/U::O
Orthonormal basis eigenmodes:
0 > X
a
2 . (lmx\ . /mmy 5
_ I\’ mm 2
Eigenvalues:  \;,, = — — - (7) (I,m=1,2,...)

Each 2D mode is a tensor product of 1D modes. For simplicity, we truncate the mode sum such
that the max horizontal 1D mode index = the max vertical 1D mode index.

Density:

P(z,y) = ) (1—(“7_2‘1)2) <1—(y_d)2> z—d|<h, |y—dl<h
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Choosing the Optimal Number of Modes (to Minimize

Norm of the Field Error) - 2D Example

0.07: RMS error vs. number of particles Contours of RMS error

2000f

1500+
o200 40 60 so0  io0d P ZQ 1000+
RMS error vs. number of modes gfgq”;gg g‘g]i;‘;zr —
0.07, _
(@]
>~ 0.06¢ 500+
TE 0.04:
S 0.03 -
= 002 0
0.01"
o 5 10 15 20NX:NY
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Probabilistic model of particle noise (identities)

If a; (j=1,..,N), b, (k=1,..,M) are single-particle dynamical variables, some work gives:

N | N N
1
E (a;)| = H a,] + — Z Covla,, a] H Ela,] + O (m)
j=1 j=1 Ny 7,k=1 n#j p
- B j<k n#k
[N M | | N M N M ]
Cov H<aj>, 1]k = N, Z H.E[ar] ] | Elbs] Covia;, bi] + O <N2>
_]:1 k=1 i J=1k=1r#j s#£k

Using the linearity of E and Cov, these results allow us to determine the statistics of any
quantity that is given as a polynomial when expressed using beam-based averages on

the single-particle phase space.

This covers all cases of interest here. Higher-order terms in 1/N, are neglected.
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