Author: Avrakhov, P.V.
Paper Title Page
TUPAF19 pyaopt Optimization Suite and its Applications to an SRF Cavity Design for UEMs 229
  • A. Liu, P.V. Avrakhov, R.A. Kostin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • C.-J. Jing
    Euclid Beamlabs LLC, Bolingbrook, USA
  Funding: DOE SBIR
In order to achieve sharp, high resolution real-time imaging, electrons in a MeV UEM (ultrafast electron microscope) beamline need to minimize instabilities. The Superconducting RF (SRF) photocathode gun is a promising candidate to produce highly stable electrons for UEM/UED applications. It operates in an ultrahigh Q, CW mode, and dissipates a few watts of RF power, which make it possible to achieve a 10s ppm level of beam stability by using modern RF control techniques. In order to find the best performance of the gun design, an optimization procedure is required. pyaopt is a Python-based optimization suite that supports multi-objective optimizations using advanced algorithms. In this paper, the novel SRF photogun design and its optimizations through pyaopt and Astra’s beam simulations will be discussed.
DOI • reference for this paper ※  
About • paper received ※ 22 October 2018       paper accepted ※ 15 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)