Author: Crittenden, J.A.
Paper Title Page
TUPAF08 A Full Field-Map Modeling of Cornell-BNL CBETA 4-Pass Energy Recovery Linac 186
  • F. Méot, S.J. Brooks, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • J.A. Crittenden
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
The Cornell-BNL Electron Test Accelerator (CBETA) is a four-pass, 150 MeV energy recovery linac (ERL), now in construction at Cornell. A single fixed-field alternating gradient (FFAG) beam line recirculates the four energies, 42, 78, 114 and 150 MeV. The return loop is comprised of 107 quadrupole-doublet cells, built using Halbach permanent magnet technology. Spreader and combiner sections (4 independent beam lines each) connect the 36 MeV linac to the FFAG loop. We present here a start-to-end simulation of the 4-pass ERL, entirely, and exclusively, based on the use of magnetic field maps to model the magnets and correctors. There are paramount reasons for that and this is discussed, detailed outcomes are presented, together with comparisons with regular beam transport (mapping based) techniques.
slides icon Slides TUPAF08 [2.568 MB]  
DOI • reference for this paper ※  
About • paper received ※ 23 October 2018       paper accepted ※ 07 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)