Author: Römer, U.
Paper Title Page
Uncertainty Quantification for the Fundamental Mode Spectrum of the European XFEL Cavities  
  • N. G. Georg, J. Corno, H. De Gersem, U. Römer, S. Schöps
    TEMF, TU Darmstadt, Darmstadt, Germany
  • S. Gorgi Zadeh, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • A.A. Sulimov
    DESY, Hamburg, Germany
  Funding: The authors would like to acknowledge the support by the DFG (German Research Foundation) in the framework of the Scientific Network SCHM 3127/1,2 that provided the basis for this collaborative work.
The fundamental mode spectrum of superconducting cavities is sensitive to small geometry deformations introduced by the manufacturing process. In this work we consider variations in the equatorial and iris radii of the 1.3 GHz TESLA cavities used at the European XFEL. The cavities with slightly perturbed geometry are simulated using a finite element based eigenvalue solver. Employing uncertainty quantification methods such as sparse-grids, statistical information about the fundamental mode spectrum can be efficiently calculated. Moreover, using global sensitivity analysis, in particular Sobol indices, the impact of the individual geometry parameters on the quantities of interest, i.e. resonance frequencies, field-flatness and the cell-to-cell coupling coefficient, can be computed. We will explain important aspects of the uncertainty quantification methodology and give numerical results for illustration.
slides icon Slides TUPAG08 [0.672 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)