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Thermionic Energy Converters as Alternative Electrical Generators
• Electricity generation in the United States (and elsewhere) is largely a 

product of old technologies 
• Large Scale (>MW): fuel drives turbines to generate current 

• High fixed costs for development and deployment - efficiency at large scale 
• Stagnant industrial progress 

• Small scale (<~KW): lithium-ion batteries 
• High materials cost limits price/stored-energy - not scalable 
• Battery technologies reaching limits on efficiency and size
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• Thermionic Energy Converters (TECs)  
• Boil off electrons at hot emitter and absorb 

at cold collector to generate current. 
• Power is generated by difference in 

electrochemical potential 
•Compelling features of TECs 

• High efficiencies approaching Carnot limit 
• Scalable, robust, no moving parts 
• Challenging to model! Complex dynamics!

V. V.S. Meir (2012)
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TEC constraints and design strategies
• Thermionic emission scales  

strongly with temperature 
• Child-Langmuir limits peak current  

for simple diode 
– Lower temperature leads to reduced current 
– Biasing anode leads to lower efficiency 
– Reducing gap leads to cooling difficulties 

• Solution: Inter-gap grid applies voltage 

– Increase effective space-charge limit without biasing anode 
– Grid is lossy. Its design and placement must be optimized
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Realistic TEC efficiency includes loss channels
• Goal: Maximize current at collector, minimize losses 

• Many possible energy loss channels during operation 
1. Kinetic losses - excess electron kinetic energy heats surface 
 
  

2. Grid losses - electron intercepted by accelerating gate 
 
  

3. Radiative losses - heat lost through emissivity 
 
  

4. Resistive losses - losses in external circuit
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For more on these models, see Voesch et al. Energy Technology, 5(12):2234-2243, (2017).
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Case Study: Grid transparency in relation to transverse dynamics
• For simple device, transparency peaks as grid approaches collector, 

even for different Te and Vgrid 
– Transverse kick from grid drives large oscillations 
– Effects of transverse motion mitigated closer to grid 
– This effect is dimensional in nature, coupling motion in both planes 

• Further reason why 3D dynamics are critical to optimizing  
• Conclusion: Minimize transverse dynamics for maximum efficiency
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Case Study: Grid losses shift ideal operating point
• Ignoring grid losses, efficiency scales consistent 

across different voltages 
• Introducing grid/anode losses significantly 

changes optimum 
– Losses scale strongly with voltage 
– But, grid voltage is important for  

extracting ideal current 
• Conclusion: Voltage must optimize total 

current while minimizing energy-per-particle 
– Similar to an I-V characteristic
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Improvements in modeling TECs using the Warp Code
• An open-source* plasma and accelerator simulation framework, developed 

by Lawrence Berkeley National Laboratory, now a part of the Berkeley Lab 
Accelerator Simulation Toolkit& 
– 2D, R-Z, and 3D geometries featuring electrostatic and electromagnetic 

particle-in-cell 
– Macro-particle, Multi-species, beam-envelope, transverse slice, emission 

models 
– Internal conductors, dielectrics, adaptive mesh refinement 
– RadiaSoft efforts to support vacuum devices#: 

• Enhance dielectric capabilities and extend solver to 3D and parallel use 
• Improve and validate emission models for novel cathodes 
• New geometry capabilities (mesh-refinement/“cut-cells” with internal boundaries) 
• CAD input-output with support for standard files
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Additional developments for plasma 
dynamics at Exascale - R. Ryne 10/21

* https://bitbucket.org/
berkeleylab/warp/src/master/

& http://blast.lbl.gov/blast-
codes-warp/ 

# https://bitbucket.org/
radiasoft/warp/src/master/

https://bitbucket.org/berkeleylab/warp/src/master/
http://blast.lbl.gov/blast-codes-warp/
https://bitbucket.org/radiasoft/warp/src/master/
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Requirements: Emission in the space-charge limited regime
• TECs are most efficient when space-charge limited 

– Child-Langmuir is a cold limit 
– Approaching C-L at high temperature introduces 

some transient effects which quickly dampen 
• Proper modeling of field enhancement, “Schottky 

emission” is required due to applied field 
– Field enhancement is critical for advanced emitters 
– Warp implementation shows good agreement
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Requirements: Self-consistent dielectric interactions
• TEC grids may require dielectric supports or anchors for mechanical stability 

– Isolated from an external circuit,  
these supports may charge and  
deflect particles 

• Improvements to Warp’s capabilities 
– Extended MultiGridDielectric solver 

from 2D to 3D, parallelization 
– Installing dielectrics is now consistent  

with installing conductors 
– New “Dielectric Particles” permit  

charging of dielectric surfaces
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Challenges: Reducing computational expense
• Most of a TEC is empty space 

– Areas of interest are separated by vacuum region 
– Transit time between theses areas of interest is 

significant fraction of simulation 
– Reflection and oscillatory dynamics introduce 

transient behavior extends simulation duration 
• High aspect ratio limits solver speed  

– Cell-centered dielectric solver is slower as 
coarseness of V-cycle is limited by extra cells
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A hybrid quasi-static approach to reduce computational demands
• Achieving steady-state drains significant resources (25-30% of total) 

– Especially significant for 3D simulations with small grid features and small time-step 
• Use quasi-static solver: iterative emission converges to steady-state solution much faster! 

– Successful strategy for gun/source studies with clearly defined geometries 
– Efficient when current is evenly distributed, less efficient for sharp bottlenecks in current 
– Still suffers from captured trajectory problem 

• Planned improvements:  
– Parallelization for future efforts with 3D optimization 
– Resolve captured trajectories through smart “time-out”
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A cloud-based platform for VNDs via Sirepo
• Complex simulation tools require expertise and dedicated support for training and troubleshooting 
• We are developing a 3D interface on RadiaSoft’s Sirepo platform - https://alpha.sirepo.com/#/warpvnd  
• Automated Diagnostics - fields, particles, loss diagrams 
• Choice of Solvers - multigrid, dielectric, quasi-static 
• Automated Visualizations - 2D/3D rendering with VTK.js
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https://alpha.sirepo.com/#/warpvnd
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Streamlining TEC designs in Sirepo
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3D Grid Visualizations

“Drag and drop” 
grid design

Preview Electric Fields

Preview of Electrostatic Potential



/16ICAP 2018 - Key West, Flradiasoft

Rapid design evaluation in Sirepo
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Future Interface Plans
• Generalized CAD support 

– Leverage cut-cells/mesh refinement 
– Vertex-based specification 
– STL I/O 

• Launching of jobs at NERSC 
– NEWT (NERSC Web Toolkit) for queue 

management and authentication 
– Shifter for container management 

• Integrate and improve optimization 
– Native Warp with Python hooks 

• Standard Scikit + genetic algorithms 
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Conclusions
• Thermionic energy converters present attractive solutions for 

efficiency energy production 
– Scalable from personal (KW) to community (MW) sources 
– Novel emitter technologies promise higher efficiency 
– Novel production techniques promise portability 

• Optimization of these devices requires careful simulation studies 
– Proper measurement of steady-state system 
– Rigorous efficiency model to capture discrete loss channels 

• Using Warp, we are improving the capabilities to model and 
optimize TECs and similar nano-electronics 
– Enhanced dielectric solver for realistic structures 
– Improved geometry-handling for complex emitters/grids 
– New optimization tools for deploying Warp simulations 

• These tools are being made available via a browser-based platform 
for scientific computing, https://www.sirepo.com
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https://www.sirepo.com


/16ICAP 2018 - Key West, Flradiasoft

Additional material
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Anatomy of a TEC Simulation

Four Stages of Simulation 
• Startup: Begin emission 
• Steady-state check: Validate current 
• Measurement: Begin collection 
• Wind-Down: End collection 
Required statistics are device specific!
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External circuit model required to 
maintain feedback 

• Vload must bridge gap in work functions 
• The load resistance must be chosen 

based on the operating conditions 
• If 𝜎 is too small, low voltage 

• If 𝜎 is too large, low current


