Surrogate Modeling for Charged Particle Accelerator Beam Dynamics

Auralee Edelen, Nicole Neveu, Andreas Adelmann, Yannick Huber

ICAP 2018, Key West, Florida

Accelerator simulations that include nonlinear / collective effects are powerful tools, but they can be very slow to execute

> Impedes start-to-end optimization Impedes use as an online model / virtual diagnostic Impedes use in control / control development Often takes much effort to replicate real machine behavior

 \rightarrow especially for complicated setups and acceleration schemes (e.g. plasma-based)

Accelerator simulations that include nonlinear / collective effects are powerful tools, but they can be very slow to execute

> Impedes start-to-end optimization Impedes use as an online model / virtual diagnostic Impedes use in control / control development Often takes much effort to replicate real machine behavior

One approach: faster modeling codes

Simpler models (tradeoff with accuracy) analytic calculations e.g. J. Galambos, et al., HPPA5, 2007

Parallelization and GPU-acceleration of existing codes

HPSim/PARMILA elegant X. Pang, PAC I 3, MOPMA I 3 I.V. Pogorelov, et al., IPAC I 5, MOPMA035

Improvements to modeling algorithms

Lorentz-boosted frame J.-L. Vay, Phys. Rev. Lett. 98 (2007) 130405

Accelerator simulations that include nonlinear / collective effects are powerful tools, but they can be very slow to execute

> Impedes start-to-end optimization Impedes use as an online model / virtual diagnostic Impedes use in control / control development

Often takes much effort to replicate real machine behavior

One approach: faster modeling codes

Simpler models (tradeoff with accuracy) analytic calculations e.g. J. Galambos, et al., HPPA5, 2007

Parallelization and GPU-acceleration of existing codes

HPSim/PARMILA elegant X. Pang, PAC I 3, MOPMA I 3 I.V. Pogorelov, et al., IPAC I 5, MOPMA035

Improvements to modeling algorithms

Lorentz-boosted frame J.-L. Vay, Phys. Rev. Lett. 98 (2007) 130405

Another approach: machine learning model Once trained, neural networks can execute quickly Train on data from slow, high-fidelity simulations Train on measured data Optimization NN Model Simulation Input -+ Machine

•

٠

SLAC

- Train from high-fidelity simulation results \rightarrow orders of magnitude speedup
- Update with measured data \rightarrow bridge gap between sims and real machine
- Use as a virtual diagnostic → predict what a diagnostic would show when it is unavailable
- Use to facilitate control → model-based control, use with online optimization, use as a platform for controls development
 - Can use for design studies \rightarrow new setups on existing machines + designing downstream components

Another approach: machine learning model Once trained, neural networks can execute quickly Train on data from slow, high-fidelity simulations + Train on measured data

NN Model

Simulation

+ Machine

Input

.

•

٠

Optimization

An initial study at Fermilab:

A. L. Edelen, J.P. Edelen. D. Edstrom, et al. NAPAC16, TUPOA51

PARMELA with 2-D space charge routine: ~ 20 mins Neural network model: ~ a millisecond

- Train from high-fidelity simulation results -> orders of magnitude speedup
- Update with measured data \rightarrow bridge gap between sims and real machine
- Use as a virtual diagnostic → predict what a diagnostic would show when it is unavailable
- Use to facilitate control \rightarrow model-based control, use with online optimization, use as a platform for controls development
- Can use for design studies \rightarrow new setups on existing machines + designing downstream components

All mean absolute errors between 0.9% and 3.1% of the parameter ranges

But can we really trust these models in optimization, and what are the limitations?

But can we really trust these models in optimization, and what are the limitations?

Decided to investigate this with the Argonne Wakefield Accelerator

-- extensive simulation work for the AWA already done by N. Neveu

- computing resources to do GA study in simulation

- OPAL head developer A. Adelmann already collaborating with AWA + past work on polynomial chaos expansion (PCe) surrogates for a cyclotron (https://arxiv.org/pdf/1509.08130.pdf)

Surrogate Modeling for the AWA: Small Initial Study

Trained on ~30k iterations of output from optimization of injector / beamline in OPAL

Variable	Unit	Range
Bunch FWHM	[ps]	0.05 – 25.1
ϕ	[°]	-39.1 – 6.7
l _{bs}	[A]	72 – 638
I _s	[A]	173 – 266
Q1	[m ⁻¹]	-10.0 - 12.0
Q2	[m ⁻¹]	-12.5 – 13.7
Q3	[m ⁻¹]	-10.4 - 13.1
Q4	[m ⁻¹]	-12.2 – 7.9

SLAC

Follow-up study:

focus on pareto fronts

Workflow for Assessing Comparison with GA

Workflow for Assessing Comparison with GA

Comparison of Pareto Fronts

OPAL GA: ~42,510 core hours at ALCF ~16.2 hours 130,865 simulation evaluations *(for each new optimization)*

NN Surrogate: ~2 minutes on laptop

SLAC

(hidden cost: ~70k initial simulations for training, but in principle only need to do once, and might be able to use smaller data set)

Comparison of Pareto Fronts

SLAC

Training on imperfect simulations: ML model only as good as the simulation relative to the real machine

Poor agreement between simulation and measured data for some input/output relationships, but good for others

→ can we update the NN model with measured data without disrupting the good predictions?

Work with J.P Edelen, D. Edstrom, J. Ruan A. L. Edelen, et al. IPAC18, WEPAF040

Example from Fermilab's FAST Facility

Multi-slit emittance measurement after the second capture cavity (X107 to X111) takes 10-15 seconds \rightarrow can we get an online prediction of what this intercepting diagnostic would show?

Example from FAST

Simulation Data Only

Jpdated with Measured Data

Why bother with simulation at all? -> Rough initial solution facilitates training with small amount of measured data

A. L. Edelen, et al. IPAC18, WEPAF040

Predicting Image Output Directly

Simulated

NN Predictions

Difference

- Results from AWA look promising with regard to using surrogate model in optimization
- Results from FAST show promise in updating surrogate trained in simulation with measured data + predicting image output directly as a virtual diagnostic
- Still needs more thorough study
 - How to ensure sampling is sufficient to capture behavior
 - Robustness with wider parameter ranges (for AWA case didn't include cases with particle losses)
 - Comparison with other models (looked mainly at NN and PCe)
 - Prediction uncertainty + sensitivity analysis (get prediction uncertainty for 'free' with PCe model)

→ New initiative at SLAC (with D. Ratner, C. Mayes, N. Neveu) in surrogate modeling for LCLS, LCLS-II + ongoing collaboration between PSI and SLAC

SLAC

SLAC

Initial population: 656 Min population: 328 Cores used: 2624 Nodes (64 cores each): 41 Number of gens: 200

Total time: 16.2 hours

Core hours: ~42,510

Could in principle use measured data alone, but want to be efficient with machine time

\rightarrow use simulation data to fill out the training set

cathode \rightarrow CC2 with 3-D space charge routine