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Accelerator simulations that include nonlinear / collective effects are powerful tools, 
but they can be very slow to execute

Impedes start-to-end optimization

Impedes use as an online model / virtual diagnostic

Impedes use in control  / control development

Often takes much effort to replicate real machine behavior 
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D. Ratner, et al., PRSTAB18, 030704 (2015)
A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)

à especially for complicated setups and acceleration schemes (e.g. plasma-based)
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One approach: faster modeling codes

Simpler models (tradeoff with accuracy)
analytic calculations

Parallelization and GPU-acceleration of existing codes
HPSim/PARMILA

elegant 

Improvements to modeling algorithms

I. V. Pogorelov, et al., IPAC15, MOPMA035
X. Pang, PAC13, MOPMA13

e. g.  J. Galambos, et al., HPPA5, 2007

J.-L. Vay, Phys. Rev. Lett.98 (2007) 130405Lorentz-boosted frame
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Another approach: machine learning model
Once trained, neural networks can execute quickly

Train on data from slow, high-fidelity simulations

Train on measured data
+

Simulation
+ Machine

NN Model

An initial study at Fermilab:

One PARMELA run with 2-D space charge: ~ 20 minutes
Neural network model: ~ a millisecond

A. L. Edelen, et al. NAPAC16, TUPOA51



• Train from high-fidelity simulation results  à orders of magnitude speedup

• Update with measured data  à bridge gap between sims and real machine

• Use as a virtual diagnostic à predict what a diagnostic would show when it 
is unavailable

• Use to facilitate control à model-based control, use with online 
optimization, use as a platform for controls development

• Can use for design studies à new setups on existing machines + designing 
downstream components
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+ Machine
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An initial study at Fermilab:

One PARMELA run with 2-D space charge: ~ 20 minutes
Neural network model: ~ a millisecond

A. L. Edelen, et al. NAPAC16, TUPOA51An initial study at Fermilab:

PARMELA with 2-D space charge routine: ~ 20 mins 
Neural network model: ~ a millisecond

A. L. Edelen, J.P. Edelen. D. Edstrom, et al. NAPAC16, TUPOA51

All mean absolute errors between 0.9% and 3.1% of the parameter ranges
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But can we really trust these models in optimization,
and what are the limitations?



But can we really trust these models in optimization,
and what are the limitations?

Decided to investigate this with the Argonne Wakefield Accelerator

-- extensive simulation work for the AWA already done by N. Neveu

-- computing resources to do GA study in simulation

-- OPAL head developer A. Adelmann already collaborating with AWA + past work on 
polynomial chaos expansion (PCe) surrogates for a cyclotron 

(https://arxiv.org/pdf/1509.08130.pdf)



Surrogate Modeling for the AWA: Small Initial Study

Trained on ~30k iterations of output from 
optimization of injector / beamline in OPAL

Variable
Bunch FWHM   

!
Ibs
Is  

Q1  
Q2 
Q3 
Q4  

Range
0.05 – 25.1
-39.1 – 6.7
72 – 638
173 – 266

-10.0 – 12.0
-12.5 – 13.7
-10.4 – 13.1
-12.2 – 7.9

Unit
[ps]
[°]
[A]
[A]

[m-1]
[m-1]
[m-1]
[m-1] 
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Follow-up study: 

focus on pareto fronts



Workflow for Assessing Comparison with GA

Random 
Sample

ML Model

Pareto front comparison

Simulation Optimization of 
Model Parameters

+-

Train ML Model on Random Sample

SimulationGA

Run GA on Simulation and ML Model 
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Workflow for Assessing Comparison with GA

Random 
Sample

ML ModelSimulation Optimization of 
Model Parameters

+-

Train ML Model on Random Sample

SimulationGA

Run GA on Simulation and ML Model 

ML ModelGA

OPAL
NSGA-II

DEAP
NSGA-II

OPAL
Random
Sample
Interface

NN,
PCe

Adjust six design variables over known good range
Evaluate seven beam parameters
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Comparison of Pareto Fronts
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OPAL GA: ~42,510 core hours at ALCF
~16.2 hours

130,865 simulation evaluations

(for each new optimization)

NN Surrogate: ~2 minutes on laptop

(hidden cost: ~70k initial simulations for training, but in principle
only need to do once, and might be able to use smaller data set) 
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Comparison of Pareto Fronts
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Poor agreement between simulation and measured data 
for some input/output relationships, but good for others

à can we update the NN model with measured data 
without disrupting the good predictions?

Training on imperfect simulations: ML model only as 
good as the simulation relative to the real machine



Example from Fermilab’s FAST Facility

The subject of this virtual diagnostic work

to high energy line 
and IOTA
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mask screenbeam

fit	to	obtain	
subset	of	phase	
space	parameters

Multi-slit emittance measurement after the second capture cavity (X107 to X111) takes 10-15 seconds 
à can we get an online prediction of what this intercepting diagnostic would show?

the subject of this work

Work with J.P Edelen, D. Edstrom, J. Ruan
A. L. Edelen, et al. IPAC18,  WEPAF040



Example from FAST

Neural
Network

Solenoid Current

Phases (Gun, CC1, CC2)

Initial Bunch Properties
(charge, length, ε

x,y 
, x-y corr.)

Transmission

Average Beam Energy

Transverse Sigma Matrix

ε
x,y  β

x,y
α

x,y

— 600	simulation	samples
— 250	measured	data	samples
— fully-connected,	feedforward	NN	
— tanh activation	functions
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Why bother with simulation at all? à Rough initial solution facilitates training with small amount of measured data



Predicting Image Output Directly

Simulated NN Predictions Difference

A. L. Edelen, et al. IPAC18,  WEPAF040
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Summary

• Results from AWA look promising with regard to using surrogate model in optimization

• Results from FAST show promise in updating surrogate trained in simulation with 
measured data + predicting image output directly  as a virtual diagnostic

• Still needs more thorough study
• How to ensure sampling is sufficient to capture behavior
• Robustness with wider parameter ranges (for AWA case didn’t include cases with particle losses)
• Comparison with other models (looked mainly at NN and PCe)
• Prediction uncertainty  + sensitivity analysis (get prediction uncertainty for ’free’ with PCe model)

à New initiative at SLAC (with D. Ratner, C. Mayes, N. Neveu) in surrogate modeling for LCLS, 
LCLS-II + ongoing collaboration between PSI and SLAC
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P0, P1: -10 to 0
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Initial population: 656
Min population: 328
Cores used: 2624
Nodes (64 cores each): 41
Number of gens: 200

Total time: 16.2 hours

Core hours: ~42,510
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gun	phase	scans
solenoid	current	scans
(with	two	different	laser	intensities)

mask screenbeam

fit	to	obtain	
subset	of	phase	
space	parameters

+ full	sigma	
matrix

simulate	gun	to	X107	in	OPAL	(space	charge),		the	mask	in	python,	and	remainder	in	elegant

OPAL elegant
other	setting	
combinations

Could in principle use measured data alone, but want to be efficient with 
machine time

à use simulation data to fill out the training set

cathode à CC2
with 3-D space charge routine


