Paper | Title | Page |
---|---|---|
SUPAF07 | High-Fidelity Three-Dimensional Simulations of Thermionic Energy Converters | 59 |
|
||
Funding: This work is supported the US DOE Office of Science, Office of High Energy Physics: DE-SC0017162. Thermionic energy converters (TEC) are a class of thermoelectric devices, which promise improvements to the efficiency and cost of both small- and large-scale electricity generation. A TEC is comprised of a narrowly-separated thermionic emitter and an anode. Simple structures are often space-charge limited as operating temperatures produce currents exceeding the Child-Langmuir limit. We present results from 3D simulations of these devices using the particle-in-cell code Warp, developed at Lawrence Berkeley National Lab. We demonstrate improvements to the Warp code permitting high fidelity simulations of complex device geometries. These improvements include modeling of non-conformal geometries using mesh refinement and cut-cells with a dielectric solver. We also consider self-consistent effects to model Schottky emission near the space-charge limit for arrays of shaped emitters. The efficiency of these devices is computed by modeling distinct loss channels, including kinetic losses, radiative losses, and dielectric charging. We demonstrate many of these features within an open-source, browser-based interface for running 3D electrostatic simulations with Warp, including design and analysis tools, as well as streamlined submission to HPC centers. |
||
Slides SUPAF07 [6.097 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAF07 | |
About • | paper received ※ 01 November 2018 paper accepted ※ 19 November 2018 issue date ※ 26 January 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAG17 | Beamline Map Computation for Paraxial Optics | 297 |
|
||
Funding: Department of Energy office of Basic energy sciences, DE-SC0018571 Modeling of radiation transport is an important topic tightly coupled to many charged particle dynamics simulations for synchrotron light sources and FEL facilities. The radiation is determined by the electron beam and magnetic field source, and then passes through beamlines with focusing elements, apertures and monochromators, in which one may typically apply the paraxial approximation of small angular deviations from the optical axis. The radiation is then used in a wide range of spectroscopic experiments, or else may be recirculated back to the electron beam source, in the case of an FEL oscillator. The Wigner function representation of electromagnetic wavefronts has been described in the literature and allows a phase space description of the radiation, similar to that used in charged particle dynamics. It can encompass both fully and partially coherent cases, as well as polarization. Here, we describe the calculation of a beamline map that can be applied to the radiation Wigner function, reducing the computation time. We discuss the use of ray tracing and wave optics codes for the map computation and benchmarking. We construct a four crystal 1:1 imaging beamline that could be used for recirculation in an XFEL oscillator, and benchmark the map based results with SRW wavefront simulations. |
||
Slides TUPAG17 [2.289 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAG17 | |
About • | paper received ※ 19 October 2018 paper accepted ※ 18 December 2018 issue date ※ 26 January 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |