Author: Jung, P. M.
Paper Title Page
SUPAF04 Symplectic and Self-Consistent Algorithms for Particle Accelerator Simulation 42
 
  • T. Planche, P. M. Jung
    TRIUMF, Vancouver, Canada
 
  This paper is a review of algorithms, applicable to particle accelerator simulation, which share the following two characteristics: (1) they preserve to machine precision the symplectic geometry of the particle dynamics, and (2) they track the evolution of the self-field consistently with the evolution of the charge distribution. This review includes, but is not limited to, algorithms using a Particle-in-Cell discretization scheme. At the end of this review we discuss to possibility to derived algorithms from an electrostatic Hamiltonian.  
slides icon Slides SUPAF04 [0.424 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAF04  
About • paper received ※ 19 October 2018       paper accepted ※ 24 October 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAG13 S-Based Macro-Particle Spectral Algorithm for an Electron Gun 290
 
  • P. M. Jung, T. Planche
    TRIUMF, Vancouver, Canada
 
  We derive a Hamiltonian description of a continuous particle distribution and its electrostatic potential from the Low Lagrangian. The self consistent space charge potential is discretized according to the spectral Galerkin approximation. The particle distribution is discretized using macro-particles. We choose a set of initial and boundary conditions to model the TRIUMF 300keV thermionic DC electron gun. The field modes and macro-particle coordinates are integrated self-consistently. The current status of the implementation is discussed.  
slides icon Slides TUPAG13 [1.335 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAG13  
About • paper received ※ 01 November 2018       paper accepted ※ 10 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)