Author: Plastun, A.S.
Paper Title Page
TUPAG20 Computational Beam Dynamics Requirements for FRIB 303
 
  • P.N. Ostroumov, Y. Hao, T. Maruta, A.S. Plastun, T. Yoshimoto, T. Zhang, Q. Zhao
    FRIB, East Lansing, USA
 
  Funding: Work supported by the U.S. DOE of Science under Cooperative Agreement DE-SC0000661 and the NSF under Cooperative Agreement PHY-1102511, the State of Michigan and Michigan State University.
The Facility for Rare Isotope Beams (FRIB) being built at Michigan State University moved to the commissioned stage in the summer of 2017. There were extensive beam dynamics simulations in the FRIB driver linac during the design stage. Recently, we have used TRACK and IMPACT simulation codes to study dynamics of ion beam contaminants extracted from the ECR together with main ion beam. The contaminant ion species can produce significant losses after the stripping. These studies resulted in development of beam collimation system at relatively low energy of 16 MeV/u and room temperature bunchers instead of originally planned SC cavities. Commissioning of the Front End and the first 3 cryomodules enabled detailed beam dynamics studies experimentally which were accompanied with the simulations using above-mentioned beam dynamics codes and optimization code FLAME. There are significant challenges in understanding of beam dynamics in the FRIB linac. The most computational challenges are in the following areas: (1) Simulation of the ion beam formation and extraction from the ECR; (2) Development of the virtual accelerator model available on-line both for optimization and multi-particle simulations. The virtual model should include realistic accelerator parameters including device misalignments; (3) Large scale simulations to support high-power ramp up of the linac with minimized beam losses; (4) Interaction of the beam with the gas stripper which is the backup option for high power operation of the linac.
 
slides icon Slides TUPAG20 [5.721 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAG20  
About • paper received ※ 02 November 2018       paper accepted ※ 10 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF04 Longitudinal Beam Dynamics in FRIB and ReA Linacs 330
 
  • A.S. Plastun, P.N. Ostroumov, A.C.C. Villari, Q. Zhao
    FRIB, East Lansing, USA
 
  The Front-End and first three cryomodules of the Facility for Rare Isotope Beam (FRIB) at Michigan State University (MSU) commissioned in July, 2018. The paper describes the online tuning procedures of the longitudinal beam dynamics through the FRIB linac. These procedures include tuning of the accelerating field phases and amplitudes in the cavities. We developed an automated simulation-based tuning procedure for the multi-harmonic buncher. In order to tune the radio-frequency quadrupole (RFQ) we measured and calculated its threshold voltage and scanned its longitudinal acceptance. Tuning of the rebunchers and superconducting accelerating cavities is per-formed by means of the phase scans and Time-Of-Flight (TOF) beam energy measurements with beam position and phase monitors. While FRIB is being commissioned, the re-accelerator (ReA3) for rare isotope beams (RIBs) is being upgraded. We redesigned the ReA3 RFQ to improve its cooling system and provide reliable operation with 16.1 MHz prebunched ion beams with A/Q = 5. In order to provide matching of any ReA3 beam both to the following upgrade cryomodules and physics experiments’ requirements, room temperature rebuncher/debuncher is being designed. The design procedure includes the beam dynamics, electromagnetic, thermal and mechanical simulations and optimizations.  
slides icon Slides WEPAF04 [2.406 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-WEPAF04  
About • paper received ※ 19 October 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)