Paper | Title | Page |
---|---|---|
SUPAF07 | High-Fidelity Three-Dimensional Simulations of Thermionic Energy Converters | 59 |
|
||
Funding: This work is supported the US DOE Office of Science, Office of High Energy Physics: DE-SC0017162. Thermionic energy converters (TEC) are a class of thermoelectric devices, which promise improvements to the efficiency and cost of both small- and large-scale electricity generation. A TEC is comprised of a narrowly-separated thermionic emitter and an anode. Simple structures are often space-charge limited as operating temperatures produce currents exceeding the Child-Langmuir limit. We present results from 3D simulations of these devices using the particle-in-cell code Warp, developed at Lawrence Berkeley National Lab. We demonstrate improvements to the Warp code permitting high fidelity simulations of complex device geometries. These improvements include modeling of non-conformal geometries using mesh refinement and cut-cells with a dielectric solver. We also consider self-consistent effects to model Schottky emission near the space-charge limit for arrays of shaped emitters. The efficiency of these devices is computed by modeling distinct loss channels, including kinetic losses, radiative losses, and dielectric charging. We demonstrate many of these features within an open-source, browser-based interface for running 3D electrostatic simulations with Warp, including design and analysis tools, as well as streamlined submission to HPC centers. |
||
Slides SUPAF07 [6.097 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAF07 | |
About • | paper received ※ 01 November 2018 paper accepted ※ 19 November 2018 issue date ※ 26 January 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPLG05 | Review of Spectral Maxwell Solvers for Electromagnetic Particle-in-Cell: Algorithms and Advantages | 345 |
|
||
Electromagnetic Particle-In-Cell codes have been used to simulate both radio-frequency accelerators and plasma-based accelerators. In this context, the Particle-In-Cell algorithm often uses the finite-difference method in order to solve the Maxwell equations. However, while this method is simple to implement and scales well to multiple processors, it is liable to a number of numerical artifacts that can be particularly serious for simulations of accelerators. An alternative to the finite-difference method is the use of spectral solvers, which are typically less prone to numerical artifacts. In this talk, I will review recent progress in the use of spectral solvers for simulations of plasma-based accelerators. This includes techniques to scale those solvers to large number of processors, extensions to cylindrical geometry, and adaptations to specific problems such as boosted-frame simulations. | ||
Slides WEPLG05 [2.861 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-WEPLG05 | |
About • | paper received ※ 06 November 2018 paper accepted ※ 28 January 2019 issue date ※ 26 January 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |