Paper | Title | Other Keywords | Page |
---|---|---|---|
SUPAG09 | Beam Dynamics Simulations of Medical Cyclotrons and Beam Transfer Lines at IBA | proton, extraction, closed-orbit, electron | 104 |
|
|||
The company Ion Beam Applications (IBA), based in Belgium, is specialized in the design and fabrication of cyclotrons for medical applications since more than 30 years. Two main classes of cyclotrons can be distinguished : cyclotrons for radiopharma production (3 MeV up to 70 MeV proton beams) and cyclotrons used in proton therapy (230 MeV proton beam). In this contribution, the developments of computational tools to simulate beam dynamics in the variety of cyclotrons and associated beam lines will be described. The main code for simulating the cyclotron beam dynamics is the ’Advanced Orbit Code’ (AOC) [1]. Examples will be shown of beam dynamics studies in the newly designed Cyclone KIUBE (18 MeV proton cyclotron for PET isotope production), the Cyclone230 and the superconducting synchro-cyclotron (S2C2), both 230 MeV proton cyclotrons for proton therapy. Calculated beam emittances, resonance crossings and beam losses will be shown and their impact on the performance of the machine will be highlighted. A strong emphasis will be put on the beam properties from the S2C2 (proton therapy cyclotron), since unexpected extracted proton beam was discovered and explained by detailed simulations [2] and the beam properties serve as input to subsequent beam line simulation tools. Several tools have been developed to simulate and design transfer lines coupled to the cyclotrons. In radiopharma applications beam losses along the beamline and the beam size on the production target are crucial, since beam intensities are high and radiation damage can be considerable. In proton therapy, beam intensities are very low but the constraints on the beam position, drift (in position, energy and intensity) and size at the patient level are very tight. In both cases a strong predictive power of the calculated beam properties in the transfer lines is needed. The compact proton gantry (CGTR) coupled with the S2C2 in the ProteusONE proton therapy system will be shown in detail. The CGTR is a s
[1] W. Kleeven et al., IPAC 2016 proceedings, TUPOY002 [2] J. Van de Walle et al., Cyclotrons2016 proceedings, THB01 |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAG09 | ||
About • | paper received ※ 19 October 2018 paper accepted ※ 04 December 2018 issue date ※ 26 January 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
SUPAG10 | Design Study of a Fast Kicker Magnet Applied to the Beamline of a Proton Therapy Facility | kicker, proton, simulation, vacuum | 110 |
|
|||
Funding: Huazhong University Of Science And Technology A proton therapy facility based on an isochronous superconducting cyclotron is under development in HUST (Huazhong University of Science and Technol-ogy). A fast kicker magnet will be installed in the up-stream of the degrader to perform the beam switch function by kicking the proton beam to the down-stream beam stop. The rising and falling time of the kicker is about 100us, and the maximum repetition rate is 500Hz. This paper introduces simulation and opti-mization of the eddy current and dynamic magnetic field of the fast kicker, by using FEM code OPERA-3D. For kicker materials, laminated steel and soft ferrite are compared and the MnZn ferrite is chosen. Design-ing considerations includes the eddy current effect, field hysteresis, and mechanical structure of the kicker will also be introduced. |
|||
Slides SUPAG10 [1.184 MB] | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAG10 | ||
About • | paper received ※ 19 October 2018 paper accepted ※ 04 December 2018 issue date ※ 26 January 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||