Keyword: electron
Paper Title Other Keywords Page
SAPLG01 Advances in Simulation of High Brightness/High Intensity Beams emittance, simulation, controls, linac 1
 
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  High brightness/high intensity beams play an important role in accelerator based applications by driving x-ray free electron laser (FEL) radiation, producing spallation neutrons and neutrinos, and generating new particles in high energy colliders. In this paper, we report on recent advances in modeling the high brightness electron beam with application to the next generation FEL light sources and in modeling space-charge effects in high intensity proton accelerators.  
slides icon Slides SAPLG01 [3.914 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SAPLG01  
About • paper received ※ 02 November 2018       paper accepted ※ 19 November 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SAPAF04 Single Objective Genetic Optimization of an 85% Efficient Klystron klystron, cavity, simulation, bunching 25
 
  • A. Jensen, J.J. Petillo
    Leidos Corp, Billerica, MA, USA
  • R.L. Ives, M.E. Read
    CCR, San Mateo, California, USA
  • J. Neilson
    SLAC, Menlo Park, California, USA
 
  Overall efficiency is a critical priority for the next generation of particle accelerators as they push to higher and higher energies. In a large machine, even a small increase in efficiency of any subsystem or component can lead to a significant operational cost savings. The Core Oscillation Method (COM) and Bunch-Align-Compress (BAC) method have recently emerged as a means to greatly increase the efficiency of the klystron RF source for particle accelerators. The COM and BAC methods both work by uniquely tuning klystron cavity frequencies such that more particles from the anti-bunch are swept into the bunch before power is extracted from the beam. The single objective genetic algorithm from Sandia National Laboratory’s Dakota optimization library is used to optimize both COM and BAC based klystron designs to achieve 85% efficiency. The COM and BAC methods are discussed. Use of the Dakota optimization algorithm library from Sandia National Laboratory is discussed. Scalability of the optimization approach to High Performance Computing (HPC) is discussed. The optimization approach and optimization results are presented.  
slides icon Slides SAPAF04 [1.476 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SAPAF04  
About • paper received ※ 16 October 2018       paper accepted ※ 19 November 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPAF06 Simulations of Coherent Electron Cooling With Free Electron Laser Amplifier and Plasma-Cascade Micro-Bunching Amplifier simulation, FEL, plasma, bunching 52
 
  • J. Ma, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  SPACE is a parallel, relativistic 3D electromagnetic Particle-in-Cell (PIC) code used for simulations of beam dynamics and interactions. An electrostatic module has been developed with the implementation of Adaptive Particle-in-Cloud method. Simulations performed by SPACE are capable of various beam distribution, different types of boundary conditions and flexible beam line, as well as sufficient data processing routines for data analysis and visualization. Code SPACE has been used in the simulation studies of coherent electron cooling experiment based on two types of amplifiers, the free electron laser (FEL) amplifier and the plasma-cascade micro-bunching amplifier.  
slides icon Slides SUPAF06 [1.260 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAF06  
About • paper received ※ 15 October 2018       paper accepted ※ 24 October 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPAF07 High-Fidelity Three-Dimensional Simulations of Thermionic Energy Converters simulation, space-charge, cathode, operation 59
 
  • N.M. Cook, J.P. Edelen, C.C. Hall, M.V. Keilman, P. Moeller, R. Nagler
    RadiaSoft LLC, Boulder, Colorado, USA
  • J.-L. Vay
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported the US DOE Office of Science, Office of High Energy Physics: DE-SC0017162.
Thermionic energy converters (TEC) are a class of thermoelectric devices, which promise improvements to the efficiency and cost of both small- and large-scale electricity generation. A TEC is comprised of a narrowly-separated thermionic emitter and an anode. Simple structures are often space-charge limited as operating temperatures produce currents exceeding the Child-Langmuir limit. We present results from 3D simulations of these devices using the particle-in-cell code Warp, developed at Lawrence Berkeley National Lab. We demonstrate improvements to the Warp code permitting high fidelity simulations of complex device geometries. These improvements include modeling of non-conformal geometries using mesh refinement and cut-cells with a dielectric solver. We also consider self-consistent effects to model Schottky emission near the space-charge limit for arrays of shaped emitters. The efficiency of these devices is computed by modeling distinct loss channels, including kinetic losses, radiative losses, and dielectric charging. We demonstrate many of these features within an open-source, browser-based interface for running 3D electrostatic simulations with Warp, including design and analysis tools, as well as streamlined submission to HPC centers.
 
slides icon Slides SUPAF07 [6.097 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAF07  
About • paper received ※ 01 November 2018       paper accepted ※ 19 November 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPAF08 Particle-in-Cell Simulation of a Bunched Electrons Beam Acceleration in a TE113 Cylindrical Cavity Affected by a Static Inhomogeneous Magnetic Field acceleration, cavity, resonance, simulation 64
 
  • E.A. Orozco
    UIS, Bucaramanga, Colombia
  • J.R. Beltrán, J.D. González, V.E. Vergara
    UMAG, Santa Marta, Colombia
 
  Funding: Universidad Industrial de Santander vice-rectory of research and extension. Mobility program N° Application: 2349
The results of the relativistic full electromagnetic Particle-in-cell (PIC) simulation of a bunched electrons beam accelerated in a TE113 cylindrical cavity in the presence of a static inhomogeneous magnetic field are presented. This type of acceleration is known as Spatial AutoResonance Acceleration (SARA)*. The magnetic field profile is such that it keeps the electrons beam in the acceleration regime along their trajectories. Numerical experiments of bunched electrons beam with the concentrations in the range 108 -109 cm-3 in a linear TE113 cylindrical microwave field of a frequency of 2.45GHz and an amplitude of 15kV /cm show that it is possible accelerate the bunched electrons up to energies of 250keV without serious defocalization effect. A comparison between the data obtained from the full electromagnetic PIC simulations and the results derived from the relativistic Newton-Lorentz equation in a single particle approximation is carried out. This acceleration scheme can be used to produce hard x-ray**.
* Dugar-Zhabon, V. D., & Orozco, E. A. (2009).Physical Review Special Topics-Accelerators and Beams, 12(4), 041301.
** Dugar-Zhabon, V. D., & Orozco, E. A. (2017). (USA Patent: 9,666, 403 )
 
slides icon Slides SUPAF08 [1.358 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAF08  
About • paper received ※ 21 October 2018       paper accepted ※ 27 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPAF09 Sparse Grid Particle-in-Cell Scheme for Noise Reduction in Beam Simulations simulation, plasma, target, damping 71
 
  • A.J. Cerfon
    Courant Institute of Mathematical Sciences, New York University, New York, USA
  • L.F. Ricketson
    LLNL, Livermore, California, USA
 
  The complexity of standard solvers grows exponentially with the number of dimensions of the underlying equations. This issue is particularly acute for continuum solvers, which need to discretize the six-dimensional phase-space distribution function, and whose run times are consequently large even for a moderate number of grid points for each dimension. Particle-in-Cell (PIC) schemes are a popular alternate approach to continuum methods, because they only discretize the three-dimensional physical space and are therefore less subject to the curse of dimensionality. Even if so, PIC solvers still have large run times, because of the statistical error which is inherent to particle methods and which decays slowly with the number of particles per cell. In this talk, we will present a new scheme to address the curse of dimensionality and at the same time reduce the numerical noise of PIC simulations. Our PIC scheme is inspired by the sparse grids combination technique, a method invented to reduce grid based error when solving high dimensional partial differential equations [1]. The technique, when applied to the PIC method, has two benefits: 1) it almost eliminates the dependence of the grid based error on dimensionality, just like in a standard sparse grids application; 2) it lowers the statistical error significantly, because the sparse grids have larger cells, and thus a larger number of particles per cell for a given total number of particles. We will analyze the performance of our scheme for standard test problems in beam physics. We will demonstrate remarkable speed up for a certain class of problems, and less impressive performance for others. The latter will allow us to identify the limitations of our scheme and explore ideas to address them.
[1] Griebel M et al. 1990 A combination technique for the solution of sparse grid problems Iterative Methods in Linear Algebra ed R Bequwens and P de Groen (Amsterdam: Elsevier) pp 263-81
 
slides icon Slides SUPAF09 [1.848 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAF09  
About • paper received ※ 19 October 2018       paper accepted ※ 19 November 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPAG06 Simulation Challenges for eRHIC Beam-Beam Study simulation, proton, damping, cavity 99
 
  • Y. Luo
    BNL, Upton, Long Island, New York, USA
  • Y. Hao
    FRIB, East Lansing, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • Y. Roblin
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 2015 Nuclear Science Advisory Committee Long Rang Plan identified the need for an electron-ion collider facility as a gluon microscope with capabilities beyond those of any existing accelerator complex. To reach the required high energy, high luminosity, and high polarization, the eRHIC design based on the existing heady ion and polarized proton collider RHIC adopts a very small beta-function at the interaction point, a high collision repetition rate, and a novel hadron cooling scheme. Collision with a full crossing angle of 22 mrad and crab cavities for both electron and proton rings are required. In this article, we will present the high priority R&D items related to beam-beam interaction for the current eRHIC design, the simulation challenges, and our plans to address them.
 
slides icon Slides SUPAG06 [2.395 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAG06  
About • paper received ※ 18 October 2018       paper accepted ※ 03 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPAG09 Beam Dynamics Simulations of Medical Cyclotrons and Beam Transfer Lines at IBA proton, cyclotron, extraction, closed-orbit 104
 
  • J. van de Walle, E. Forton, W.J.G.M. Kleeven, J. Mandrillon, V. Nuttens, E. Van Der Kraaij
    IBA, Louvain-la-Neuve, Belgium
 
  The company Ion Beam Applications (IBA), based in Belgium, is specialized in the design and fabrication of cyclotrons for medical applications since more than 30 years. Two main classes of cyclotrons can be distinguished : cyclotrons for radiopharma production (3 MeV up to 70 MeV proton beams) and cyclotrons used in proton therapy (230 MeV proton beam). In this contribution, the developments of computational tools to simulate beam dynamics in the variety of cyclotrons and associated beam lines will be described. The main code for simulating the cyclotron beam dynamics is the ’Advanced Orbit Code’ (AOC) [1]. Examples will be shown of beam dynamics studies in the newly designed Cyclone KIUBE (18 MeV proton cyclotron for PET isotope production), the Cyclone230 and the superconducting synchro-cyclotron (S2C2), both 230 MeV proton cyclotrons for proton therapy. Calculated beam emittances, resonance crossings and beam losses will be shown and their impact on the performance of the machine will be highlighted. A strong emphasis will be put on the beam properties from the S2C2 (proton therapy cyclotron), since unexpected extracted proton beam was discovered and explained by detailed simulations [2] and the beam properties serve as input to subsequent beam line simulation tools. Several tools have been developed to simulate and design transfer lines coupled to the cyclotrons. In radiopharma applications beam losses along the beamline and the beam size on the production target are crucial, since beam intensities are high and radiation damage can be considerable. In proton therapy, beam intensities are very low but the constraints on the beam position, drift (in position, energy and intensity) and size at the patient level are very tight. In both cases a strong predictive power of the calculated beam properties in the transfer lines is needed. The compact proton gantry (CGTR) coupled with the S2C2 in the ProteusONE proton therapy system will be shown in detail. The CGTR is a s
[1] W. Kleeven et al., IPAC 2016 proceedings, TUPOY002
[2] J. Van de Walle et al., Cyclotrons2016 proceedings, THB01
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAG09  
About • paper received ※ 19 October 2018       paper accepted ※ 04 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLG01 Challenges in Simulating Beam Dynamics of Dielectric Laser Acceleration laser, focusing, experiment, acceleration 120
 
  • U. Niedermayer, O. Boine-Frankenheim, T. Egenolf, E. Skär
    TEMF, TU Darmstadt, Darmstadt, Germany
  • A. Adelmann, S. Bettoni, M. Calvi, M.M. Dehler, E. Ferrari, F. Frei, D. Hauenstein, B. Hermann, N. Hiller, R. Ischebeck, C. Lombosi, E. Prat, S. Reiche, L. Rivkin
    PSI, Villigen PSI, Switzerland
  • R.W. Aßmann, U. Dorda, M. Fakhari, I. Hartl, W. Kuropka, F. Lemery, B. Marchetti, F. Mayet, H. Xuan, J. Zhu
    DESY, Hamburg, Germany
  • D.S. Black, P. N. Broaddus, R.L. Byer, A.C. Ceballos, H. Deng, S. Fan, J.S. Harris, T. Hirano, Z. Huang, T.W. Hughes, Y. Jiang, T. Langenstein, K.J. Leedle, Y. Miao, A. Pigott, N. Sapra, O. Solgaard, L. Su, S. Tan, J. Vuckovic, K. Yang, Z. Zhao
    Stanford University, Stanford, California, USA
  • H. Cankaya, A. Fallahi, F.X. Kärtner
    CFEL, Hamburg, Germany
  • D.B. Cesar, P. Musumeci, B. Naranjo, J.B. Rosenzweig, X. Shen
    UCLA, Los Angeles, USA
  • B.M. Cowan
    Tech-X, Boulder, Colorado, USA
  • R.J. England
    SLAC, Menlo Park, California, USA
  • E. Ferrari, L. Rivkin
    EPFL, Lausanne, Switzerland
  • T. Feurer
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
  • P. Hommelhoff, A. Li, N. Schönenberger, R. Shiloh, A.D. Tafel, P. Yousefi
    University of Erlangen-Nuremberg, Erlangen, Germany
  • Y.-C. Huang
    NTHU, Hsinchu, Taiwan
  • J. Illmer, A.K. Mittelbach
    Friedrich-Alexander Universität Erlangen-Nuernberg, University Erlangen-Nuernberg LFTE, Erlangen, Germany
  • F.X. Kärtner
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • W. Kuropka, F. Mayet
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • Y.J. Lee, M. Qi
    Purdue University, West Lafayette, Indiana, USA
  • E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
 
  Funding: ACHIP is funded by the Gordon and Betty Moore Foundation (Grant No. GBMF4744). U.N. acknowledges German BMBF Grant No. FKZ:05K16RDB. B.C. acknowledges NERSC, Contract No. DE-AC02-05CH11231.
Dielectric Laser Acceleration (DLA) achieves the high- est gradients among structure-based electron accelerators. The use of dielectrics increases the breakdown field limit, and thus the achievable gradient, by a factor of at least 10 in comparison to metals. Experimental demonstrations of DLA in 2013 led to the Accelerator on a Chip International Program (ACHIP), funded by the Gordon and Betty Moore Foundation. In ACHIP, our main goal is to build an acceler- ator on a silicon chip, which can accelerate electrons from below 100keV to above 1MeV with a gradient of at least 100MeV/m. For stable acceleration on the chip, magnet- only focusing techniques are insufficient to compensate the strong acceleration defocusing. Thus spatial harmonic and Alternating Phase Focusing (APF) laser-based focusing tech- niques have been developed. We have also developed the simplified symplectic tracking code DLAtrack6D, which makes use of the periodicity and applies only one kick per DLA cell, which is calculated by the Fourier coefficient of the synchronous spatial harmonic. Due to coupling, the Fourier coefficients of neighboring cells are not entirely independent and a field flatness optimization (similarly as in multi-cell cavities) needs to be performed. The simu- lation of the entire accelerator on a chip by a Particle In Cell (PIC) code is possible, but impractical for optimization purposes. Finally, we have also outlined the treatment of wake field effects in attosecond bunches in the grating within DLAtrack6D, where the wake function is computed by an external solver.
 
slides icon Slides MOPLG01 [3.947 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-MOPLG01  
About • paper received ※ 20 October 2018       paper accepted ※ 24 October 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLG03 Spin Dynamics in Modern Electron Storage Rings: Computational and Theoretical Aspects polarization, storage-ring, radiation, synchrotron 127
 
  • K.A. Heinemann, O. Beznosov, J.A. Ellison
    UNM, Albuquerque, New Mexico, USA
  • D. Appelö
    University of Colorado at Boulder, Boulder, USA
  • D.P. Barber
    DESY, Hamburg, Germany
 
  Funding: U.S. Department of Energy, Office of Science, Office of High Energy Physics, Award Number DE-SC0018008
In this talk we present some numerical and analytical results from our work on the spin polarization in high energy electron storage rings. Our work is based on the initial value problem of what we call the full Bloch equations (FBEs). The solution of the FBEs is the polarization density which is proportional to the spin angular momentum density per particle in phase space and which determines the polarization vector of the bunch. The FBEs take into account spin diffusion effects and spin-flip effects due to synchrotron radiation including the Sokolov-Ternov effect and its Baier-Katkov generalization. The FBEs were introduced by Derbenev and Kondratenko in 1975 as a generalization of the Baier-Katkov-Strakhovenko equations from a single orbit to the whole phase space. The FBEs are a system of three uncoupled Fokker-Planck equations plus two coupling terms, i.e., the T-BMT term and the Baier-Katkov term. Neglecting the spin flip terms in the FBEs one gets what we call the reduced Bloch equations (RBEs). The RBEs are sufficient for computing the depolarization time. The conventional approach of estimating and optimizing the polarization is not based on the FBEs but on the so-called Derbenev-Kondratenko formulas. However, we believe that the FBEs offer a more complete starting point for very high energy rings like the FCC-ee and CEPC. The issues for very high energy are: (i) Can one get polarization, (ii) are the Derbenev-Kondratenko formulas satisfactory at very high energy? If not, what are the theoretical limits of the polarization? Item (ii) will be addressed both numerically and analytically. Our numerical approach has three parts. Firstly we approximate the FBEs analytically using the method of averaging, resulting in FBEs which allow us to use large time steps (without the averaging the time dependent coefficients of the FBEs would necessitate small time steps). The minimum length of the time interval of interest is of the order of the orbital damping time. Seco
 
slides icon Slides MOPLG03 [0.465 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-MOPLG03  
About • paper received ※ 20 October 2018       paper accepted ※ 24 October 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAF03 Polarization Lifetime in an Electron Storage Ring, an Ergodic Approach in eRHIC EIC polarization, storage-ring, simulation, resonance 140
 
  • F. Méot
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
Electron polarization in a storage ring is subject to two very long term effects: Sokolov-Ternov polarization and depolarization by diffusion. This leads to an equilibrium state over a very long time scale, and, simulation-wise, is highly CPU-time and -memory consuming. Simulations aimed at determining optimal ring storage energy in an electron-ion collider in this context, are always based on tracking bunches with thousands of particles, and in addition for short time scales in comparison, due to HPC limitations. Based on considerations of ergodicity of electron bunch dynamics in the presence of synchrotron radiation, and on the very slow depolarization aimed at in a collider, tracking a single particle instead is investigated, here. This saves a factor of more than 2 orders of magnitudes in the parameter CPU-time*Memory-allocation, it allows much longer tracking and thus improved accuracy on the evaluation of polarization and time constants. The concept is illustrated with polarization lifetime and equilibrium polarization simulations at the eRHIC electron-ion collider.
 
slides icon Slides MOPAF03 [1.758 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-MOPAF03  
About • paper received ※ 23 October 2018       paper accepted ※ 27 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAF04 Spin Dynamics in Modern Electron Storage Rings: Computational Aspects polarization, storage-ring, radiation, coupling 146
 
  • O. Beznosov, J.A. Ellison, K.A. Heinemann
    UNM, Albuquerque, New Mexico, USA
  • D. Appelö
    University of Colorado at Boulder, Boulder, USA
  • D.P. Barber
    DESY, Hamburg, Germany
 
  Funding: This material is based on work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC0018008.
In this talk we present some numerical results from our work on the spin polarization in high energy electron storage rings. The motivation of our work is to understand spin polarization in very high energy rings like the proposed Future Circular Collider* (FCC-ee) and Circular Electron Positron Collider** (CEPC). This talk is a supplement to K. Heinemann’s talk and gives further numerical details and results. As discussed in Heinemann’s talk our work is based on the initial value problem of the full Bloch equations*** (FBEs) which in turn determines the polarization vector of the bunch. The FBEs take into account spin diffusion effects and spin-flip effects due to synchrotron radiation. The FBEs are a system of three uncoupled Fokker-Planck equations plus coupling terms. Neglecting the spin flip terms in the FBEs one gets the reduced Bloch equations (RBEs) which poses the main computational challenge. Our numerical approach has three parts. Firstly we approximate the FBEs analytically using the method of averaging, resulting in FBEs which allow us to use large time steps (without the averaging the time dependent coefficients of the FBEs would necessitate small time steps). The minimum length of the time interval of interest is of the order of the orbital damping time. Secondly we discretize the averaged FBEs in the phase space variables by applying the pseudospectral method, resulting in a system of linear first-order ODEs in time. The phase space variables come in d pairs of polar coordinates where d = 1, 2, 3 is the number of degrees of freedom allowing for a d-dimensional Fourier expansion. The pseudospectral method is applied by using a Chebychev grid for each radial variable and a uniform Fourier grid for each angle variable. Thirdly we discretize the ODE system by a time stepping scheme. The presence of parabolic terms in the FBEs necessitates implicit time stepping and thus solutions of linear systems of equations. Dealing with 2d + 1 independent variables p
* See http://tlep.web.cern.ch
** See http://cepc.ihep.ac.cn
*** See http://ipac2018.vrws.de/papers/thpak144.pdf
 
slides icon Slides MOPAF04 [0.993 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-MOPAF04  
About • paper received ※ 20 October 2018       paper accepted ※ 24 October 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAG01 Plasma Wakefield Start to End Acceleration Simulations From Photocathode to FEL With Simulated Density Profiles plasma, acceleration, FEL, simulation 154
 
  • A. Marocchino
    INFN/LNF, Frascati (Roma), Italy
 
  Plasma Wakefield acceleration is a promising new acceleration technique that profit by a charged bunch, e.g. an electron bunch, to break the neutrality of a plasma channel to produce a wake where a trailing bunch is eventually accelerated. The quest to achieve extreme gradient conserving high brightness has prompted to a variety of new approaches and techniques. Most of the proposed schemes are however limited to the only plasma channel, assuming in the vast majority of cases, ideal scenarios (e.g. ideal bi-gaussian bunches and uniform density plasma channels). Realistic start-to-end simulations from the photocathode to a FEL via a plasma accelerating section are a fundamental step to further investigate realistic scheme possibilities, the underlying physics and future applications. To remove ideal simplifications, the SPARC_LAB simulation team is simulating bunches from the photo-cathode and tracking them all the way to the plasma. Similarly, the density profiles, where bunches evolve and accelerate, are calculated with a magneto-hydrodynamic code. The density profile is imported into the particle in cell codes used to calculate the particle evolution within the plasma section. The use of a multitude of codes, involving different architectures, physical units and programming languages, made necessary the definition of code interfacing and pipe-processes to ensure a proper pipeline of tools that are traditionally used in different fields are do not often come across. By combining the different numerical codes (particle tracker, particle in cell, magneto-hydrodynamics and FEL codes) we could propose a first realistic start-to-end simulation from the photo-cathode to a FEL lasering for a possible upcoming Italian PWFA-FEL facility. Such a work is conducted with a great focus on code reliability and data reproducibility. The Italian PWFA experimental team uses a capillary to control and tailor the plasma density profile, we could perform preliminary code comparison and  
slides icon Slides MOPAG01 [34.540 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-MOPAG01  
About • paper received ※ 16 October 2018       paper accepted ※ 24 October 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAG02 Efficient Modeling of Laser Wakefield Acceleration Through the PIC Code Smilei in CILEX Project laser, plasma, simulation, electromagnetic-fields 160
 
  • F. Massimo, A. Beck, A. Specka, I. Zemzemi
    LLR, Palaiseau, France
  • J. Derouillat
    Maison de la Simulation, CEA, Gif-sur-Yvette, France
  • M. Grech, F. Pérez
    LULI, Palaiseau, France
 
  The design of plasma acceleration facilities requires considerable simulation effort for each part of the machine, from the plasma injector and/or accelerator stage(s), to the beam transport stage, from which the accelerated beams will be brought to the users or possibly to another plasma stage. The urgent issues and challenges in simulation of multi-stage acceleration with the Apollon laser of CILEX facility will be addressed. To simulate the beam injection in the second plasma stage, additional physical models have been introduced and tested in the open source Particle in Cell collaborative code Smilei. The efficient initialisation of arbitrary relativistic particle beam distributions through a Python interface allowing code coupling and the self consistent initialisation of their electromagnetic fields will be presented. The comparison between a full PIC simulation and a simulation with a recently developed envelope model, which allows to drastically reduce the computational time, will be also shown for a test case of laser wakefield acceleration of an externally injected electron beam.  
slides icon Slides MOPAG02 [20.462 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-MOPAG02  
About • paper received ※ 15 October 2018       paper accepted ※ 24 October 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF09 Multi Pass Energy Recovery Linac Design With a Single Fixed Field Magnet Return Line linac, cavity, lattice, betatron 191
 
  • D. Trbojevic, J.S. Berg, S.J. Brooks, F. Méot, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • W. Lou
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We present a new approach of the Energy Recovery Linac Design for the future projects: PERLE (Powerful Energy Recovery Linac for Experiments), LHeC/FCCeH and eR- HIC. The concept uses superconducting linacs and a single xed eld beam line with multiple energy passes of electron beams. This represents an update to the existing CBETA (Cornell University Brookhaven National Laboratory ERL Test Accelerator) where the superconducting linac uses a single xed eld magnet beam line with four energy passes during acceleration and four passes during the energy recov- ery. To match the single xed eld beam line to the linac the CBETA uses the spreaders and combiners on both sides of the linac, while the new concept eliminates them. The arc cells from the single xed eld beam line are connected to the linac with adiabatic transition arcs wher cells increase in length. The orbits of di erent energies merge into a sin- gle orbit through the interleaved linac within the straight sections as in the CBETA project. The betatron functions from the arcs are matched to the linac. The time of ight of di erent electron energies is corrected for the central orbits by additional correction magnet controlled induced beam oscillations.  
slides icon Slides TUPAF09 [3.935 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAF09  
About • paper received ※ 22 October 2018       paper accepted ※ 27 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF14 Analytical Calculations for Thomson Backscattering Based Light Sources laser, radiation, scattering, HOM 215
 
  • P.I. Volz, A. Meseck
    HZB, Berlin, Germany
 
  There is a rising interest in Thomson-backscattering based light sources, as scattering intense laser radiation on MeV electrons produces high energy photons that would require GeV or even TeV electron beams when using conventional undulators or dipoles. Particularly, medium energy high brightness beams delivered by LINACs or Energy Recovery LINACs, such as BERLinPro being built at Helmholtz-Zentrum Berlin, seem suitable for these sources. In order to study the merit of Thomson-backscattering-based light sources, we are developing an analytical code to simulate the characteristics of the Thomson scattered radiation. The code calculates the distribution of scattered radiation depending on the incident angle and polarization of the laser radiation. Also the impact of the incident laser profile and the full 6D bunch profile, including microbunching, are incorporated. The Status of the code and first results will be presented.  
slides icon Slides TUPAF14 [3.289 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAF14  
About • paper received ※ 21 October 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF16 Analysis of the Beam Loss Mechanism During the Energy Ramp-Up at the SAGA-LS power-supply, storage-ring, acceleration, data-acquisition 227
 
  • Y. Iwasaki
    SAGA, Tosu, Japan
 
  The accelerator of the SAGA Light Source consists of 255 MeV injector linac and 1.4 GeV storage ring. The accumulated electron beam current of the storage ring is about 300 mA. The energy of the electrons are raised up to 1.4 GeV in 4 minutes in the storage ring. At the moment of the beam acceleration (the beam energy is lower than 300 MeV), the electron beam is lost like the step function. The lost beam current is normally about 5 mA to 30 mA. The beam loss at the energy ramp-up is not observed, when the beam current is lower than 200 mA. To understand the beam loss mechanism, which depend on the beam current, we developed high-speed logging system of 100 kHz for monitoring the beam current and the magnets power supplies using National Instruments PXI. We investigated the relationship between the beam loss and the betatron tune shifts. The tune shifts during the beam acceleration were analyzed from the measured data of the output current of the magnets power supplies by using beam tracking code of TRACY2. By adopting the new high-speed logging system, the time structure of the beam loss process was clearly observed. We will present the high-speed logging system developed for monitoring the beam current and the power supplies at this meeting. The results of the investigation to find the relationship of the beam loss and the tune shifts will be also shown.  
slides icon Slides TUPAF16 [1.286 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAF16  
About • paper received ※ 19 October 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF19 pyaopt Optimization Suite and its Applications to an SRF Cavity Design for UEMs SRF, gun, simulation, cavity 229
 
  • A. Liu, P.V. Avrakhov, R.A. Kostin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • C.-J. Jing
    Euclid Beamlabs LLC, Bolingbrook, USA
 
  Funding: DOE SBIR
In order to achieve sharp, high resolution real-time imaging, electrons in a MeV UEM (ultrafast electron microscope) beamline need to minimize instabilities. The Superconducting RF (SRF) photocathode gun is a promising candidate to produce highly stable electrons for UEM/UED applications. It operates in an ultrahigh Q, CW mode, and dissipates a few watts of RF power, which make it possible to achieve a 10s ppm level of beam stability by using modern RF control techniques. In order to find the best performance of the gun design, an optimization procedure is required. pyaopt is a Python-based optimization suite that supports multi-objective optimizations using advanced algorithms. In this paper, the novel SRF photogun design and its optimizations through pyaopt and Astra’s beam simulations will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAF19  
About • paper received ※ 22 October 2018       paper accepted ※ 15 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF20 Mean-Field Density Evolution of Bunched Particles With Non-Zero Initial Velocity simulation, emittance, distributed, space-charge 233
 
  • B.S. Zerbe, P.M. Duxbury
    MSU, East Lansing, Michigan, USA
 
  Funding: NSF Grant 1625181 NSF Grant RC108666 MSU Col. Nat. Sci., Provost Off., Col. Comm. Art and Sci.
Reed (2006) presented a 1D mean-field model of initially cold pancake-beam expansion demonstrating that the evolution of the entire spatial distribution can be solved for all time where the 1D assumption holds. This model is relevant to ultra-fast electron microscopy as it describes the evolution of the distribution within the photoelectron gun, and this model is similar to Anderson’s sheet beam density time dependence (Anderson 1987) except that Reed’s theory applies to freely expanding beams instead of beams within a focussing channel. Our recent work (Zerbe 2018) generalized Reed’s analysis to cylindrical and spherical geometries demonstrating the presence of a shock that is seen in the Coulomb explosion literature under these geometries and further discussed the absence of a shock in the 1D model. This work is relevant as it offers a mechanistic explanation of the ring-like density shock that arises in non-equilibrium pancake-beams within the photoelectron gun; moreover, this shock is coincident with a region of high-temperature electrons providing an explanation for why experimentally aperturing the electron bunch results in a greater than 10-fold improvement in beam emittance(Williams 2017), possibly even resulting in bunch emittance below the intrinsic emittance of the cathode. However, this theory has been developed for cold-bunches, i.e. bunches of electrons with 0 initial momentum. Here, we briefly review this new theory and extend the cylindrical- and spherical- symmetric distribution to ensembles that have non-zero initial momentum distributions that are symmetric but otherwise unrestricted demonstrating how initial velocity distributions couple to the shocks seen in the less general formulation. Further, we derive and demonstrate how the laminar condition may be propagated through beam foci.
 
slides icon Slides TUPAF20 [1.396 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAF20  
About • paper received ※ 19 October 2018       paper accepted ※ 15 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF22 FEL Simulation Using the Lie Method simulation, wiggler, FEL, bunching 240
 
  • K. Hwang, J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: U.S. Department of Energy under Contract No. DE-AC02-05CH11231
Advances in numerical methods for free-electron-laser~(FEL) simulation under wiggler period averaging~(WPA) are presented. First, WPA is generalized using perturbation Lie map method. The conventional WPA is identified as the leading order contribution. Next, a widely used shot-noise modeling method is improved along with a particle migration scheme across the numerical mesh. The artificial shot noise arising from particle migration is suppressed. The improved model also allows using arbitrary mesh size, slippage resolution, and integration step size. These advances will improve modeling of longitudinal beam profile evolution for fast FEL simulation.
 
slides icon Slides TUPAF22 [2.245 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAF22  
About • paper received ※ 17 October 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF23 Start-to-End Simulations of THz SASE FEL Proof-of-Principle Experiment at PITZ undulator, simulation, FEL, emittance 246
 
  • M. Krasilnikov, P. Boonpornprasert, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • H.-D. Nuhn
    SLAC, Menlo Park, California, USA
  • E. Schneidmiller, M.V. Yurkov
    DESY, Hamburg, Germany
 
  The Photo Injector Test facility at DESY in Zeuthen (PITZ) develops high brightness electron sources for modern linac-based Free Electron Lasers (FELs). The PITZ accelerator has been proposed as a prototype for a tunable, high power THz source for pump and probe experiments at the European XFEL. A Self-Amplified Spontaneous Emission (SASE) FEL is considered to generate the THz pulses. High radiation power can be achieved by utilizing high charge (4 nC) shaped electron bunches from the PITZ photo injector. THz pulse energy of up to several mJ is expected from preliminary simulations for 100 um radiation wavelength. For the proof-of-principle experiments a re-usage of LCLS-I undulators at the end of the PITZ beamline is under studies. One of the challenges for this setup is transport and matching of the space charge dominated electron beam through the narrow vacuum chamber. Start-to-end simulations for the entire experimental setup - from the photocathode to the SASE THz generation in the undulator section - have been performed by combination of several codes: ASTRA, SC and GENESIS-1.3. The space charge effect and its impact onto the output THz radiation have been studied. The results of these simulations will be presented and discussed.  
slides icon Slides TUPAF23 [2.534 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAF23  
About • paper received ※ 18 October 2018       paper accepted ※ 24 October 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAG02 First Steps Towards a New Finite Element Solver for MOEVE PIC Tracking FEM, simulation, emittance, vacuum 260
 
  • U. van Rienen, C.R. Bahls, J. Heller, D. Zheng
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • U. van Rienen
    University of Rostock, Rostock, Germany
 
  Funding: This work has been supported by the German Federal Ministry for Research and Education BMBF under contract 015K16HRA.
A relevant task in designing high-brilliance light sources based on high-current linear accelerators (e.g. Energy Recovery Linacs (ERLs)) consists in systematic investigations of ion dynamics in the vacuum chamber of such machines. This is of high importance since the parasitic ions generated by the electron beam turned out to be a current-limiting factor for many synchrotron radiation sources. In particular, the planned high current operation at ERL facilities requires a precise analysis and an accurate development of appropriate measures for the suppression of ion-induced beam instabilities. The longitudinal transport of ions through the whole accelerator plays a key role for the establishment of the ion concentration in the machine. Using the Particle-in-Cell (PIC) method, we started redesigning our code MOEVE PIC Tracking in order to allow for the fast estimation of the effects of ions on the beam dynamics. For that, we exchanged the previously used Finite Difference (FD) method for the solution of Poisson’s equation within the PIC solver by a solver based on the Finite Element Method (FEM). Employing higher order FEM, we expect to gain improved convergence rates and thus lower computational times. We chose the Open Source Framework FEniCS for our new implementation.
 
slides icon Slides TUPAG02 [0.924 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAG02  
About • paper received ※ 21 October 2018       paper accepted ※ 24 October 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAG13 S-Based Macro-Particle Spectral Algorithm for an Electron Gun cathode, gun, solenoid, simulation 290
 
  • P. M. Jung, T. Planche
    TRIUMF, Vancouver, Canada
 
  We derive a Hamiltonian description of a continuous particle distribution and its electrostatic potential from the Low Lagrangian. The self consistent space charge potential is discretized according to the spectral Galerkin approximation. The particle distribution is discretized using macro-particles. We choose a set of initial and boundary conditions to model the TRIUMF 300keV thermionic DC electron gun. The field modes and macro-particle coordinates are integrated self-consistently. The current status of the implementation is discussed.  
slides icon Slides TUPAG13 [1.335 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAG13  
About • paper received ※ 01 November 2018       paper accepted ※ 10 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAG17 Beamline Map Computation for Paraxial Optics FEL, radiation, optics, synchrotron 297
 
  • B. Nash, J.P. Edelen, N.B. Goldring, S.D. Webb
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: Department of Energy office of Basic energy sciences, DE-SC0018571
Modeling of radiation transport is an important topic tightly coupled to many charged particle dynamics simulations for synchrotron light sources and FEL facilities. The radiation is determined by the electron beam and magnetic field source, and then passes through beamlines with focusing elements, apertures and monochromators, in which one may typically apply the paraxial approximation of small angular deviations from the optical axis. The radiation is then used in a wide range of spectroscopic experiments, or else may be recirculated back to the electron beam source, in the case of an FEL oscillator. The Wigner function representation of electromagnetic wavefronts has been described in the literature and allows a phase space description of the radiation, similar to that used in charged particle dynamics. It can encompass both fully and partially coherent cases, as well as polarization. Here, we describe the calculation of a beamline map that can be applied to the radiation Wigner function, reducing the computation time. We discuss the use of ray tracing and wave optics codes for the map computation and benchmarking. We construct a four crystal 1:1 imaging beamline that could be used for recirculation in an XFEL oscillator, and benchmark the map based results with SRW wavefront simulations.
 
slides icon Slides TUPAG17 [2.289 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAG17  
About • paper received ※ 19 October 2018       paper accepted ※ 18 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAG21 Novel, Fast, Open-Source Code for Synchrotron Radiation Computation on Arbitrary 3D Geometries GPU, undulator, radiation, simulation 309
 
  • D.A. Hidas
    BNL, Upton, Long Island, New York, USA
 
  Open Source Code for Advanced Radiation Simulation (OSCARS) is an open-source project (https://oscars.bnl.gov) developed at Brookhaven National Laboratory for the computation of synchrotron radiation from arbitrary charged particle beams in arbitrary and time-dependent mag- netic and electric fields on arbitrary geometries in 3D. Computational speed is significantly increased with the use of built-in multi-GPU and multi-threaded techniques which are suitable for both small scale and large scale computing infrastructures. OSCARS is capable of computing spectra, flux, and power densities on simple surfaces as well as on objects imported from common CAD software. It is additionally applicable in the regime of high-field acceleration. The methodology behind OSCARS cal- culations will be discussed along with practical examples and applications to modern accelerators and light sources.  
slides icon Slides TUPAG21 [1.712 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAG21  
About • paper received ※ 20 October 2018       paper accepted ※ 18 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF01 A Compact Permanent Magnet Spectrometer for CILEX dipole, laser, permanent-magnet, simulation 320
 
  • M. Khojoyan, A. Cauchois, J. Prudent, A. Specka
    LLR, Palaiseau, France
 
  Laser Wakefield acceleration experiments make exten- sive use of small permanent magnets or magnet assemblies for analyzing and focusing electron beams produced in plasma accelerators. Besides being compact, these magnets have to have a large angular acceptance for the divergent laser and electron beams which imposes constraint of the gap size. We will present the optimized design and charac- terization of a 100 mm long, 2.1 Tesla permanent magnet dipole. Furthermore, we will present the performance of such a magnet as a spectrometer in the CILEX/APOLLON 10PW laser facility in France.  
slides icon Slides WEPAF01 [6.898 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-WEPAF01  
About • paper received ※ 15 October 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLG05 Review of Spectral Maxwell Solvers for Electromagnetic Particle-in-Cell: Algorithms and Advantages plasma, simulation, laser, distributed 345
 
  • R. Lehé, J.-L. Vay
    LBNL, Berkeley, California, USA
 
  Electromagnetic Particle-In-Cell codes have been used to simulate both radio-frequency accelerators and plasma-based accelerators. In this context, the Particle-In-Cell algorithm often uses the finite-difference method in order to solve the Maxwell equations. However, while this method is simple to implement and scales well to multiple processors, it is liable to a number of numerical artifacts that can be particularly serious for simulations of accelerators. An alternative to the finite-difference method is the use of spectral solvers, which are typically less prone to numerical artifacts. In this talk, I will review recent progress in the use of spectral solvers for simulations of plasma-based accelerators. This includes techniques to scale those solvers to large number of processors, extensions to cylindrical geometry, and adaptations to specific problems such as boosted-frame simulations.  
slides icon Slides WEPLG05 [2.861 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-WEPLG05  
About • paper received ※ 06 November 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)