F-1 Code Development, Status and Comparison with Measurements
Paper Title Page
SUPAG09 Beam Dynamics Simulations of Medical Cyclotrons and Beam Transfer Lines at IBA 104
  • J. van de Walle, E. Forton, W.J.G.M. Kleeven, J. Mandrillon, V. Nuttens, E. Van Der Kraaij
    IBA, Louvain-la-Neuve, Belgium
  The company Ion Beam Applications (IBA), based in Belgium, is specialized in the design and fabrication of cyclotrons for medical applications since more than 30 years. Two main classes of cyclotrons can be distinguished : cyclotrons for radiopharma production (3 MeV up to 70 MeV proton beams) and cyclotrons used in proton therapy (230 MeV proton beam). In this contribution, the developments of computational tools to simulate beam dynamics in the variety of cyclotrons and associated beam lines will be described. The main code for simulating the cyclotron beam dynamics is the ’Advanced Orbit Code’ (AOC) [1]. Examples will be shown of beam dynamics studies in the newly designed Cyclone KIUBE (18 MeV proton cyclotron for PET isotope production), the Cyclone230 and the superconducting synchro-cyclotron (S2C2), both 230 MeV proton cyclotrons for proton therapy. Calculated beam emittances, resonance crossings and beam losses will be shown and their impact on the performance of the machine will be highlighted. A strong emphasis will be put on the beam properties from the S2C2 (proton therapy cyclotron), since unexpected extracted proton beam was discovered and explained by detailed simulations [2] and the beam properties serve as input to subsequent beam line simulation tools. Several tools have been developed to simulate and design transfer lines coupled to the cyclotrons. In radiopharma applications beam losses along the beamline and the beam size on the production target are crucial, since beam intensities are high and radiation damage can be considerable. In proton therapy, beam intensities are very low but the constraints on the beam position, drift (in position, energy and intensity) and size at the patient level are very tight. In both cases a strong predictive power of the calculated beam properties in the transfer lines is needed. The compact proton gantry (CGTR) coupled with the S2C2 in the ProteusONE proton therapy system will be shown in detail. The CGTR is a s
[1] W. Kleeven et al., IPAC 2016 proceedings, TUPOY002
[2] J. Van de Walle et al., Cyclotrons2016 proceedings, THB01
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAG09  
About • paper received ※ 19 October 2018       paper accepted ※ 04 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
Update on the Status of Linac Part of the PyORBIT Code  
  • A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  Funding: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.
The structure and capabilities of the linac beam dynamics part of the PyORBIT code are presented. The PyORBIT is an open source code, a descendant of the original ORBIT code that was developed at the Spallation Neutron Source (SNS) for design, commissioning, and studies of the ring. The linac part was started 8 years ago to utilize PyORBIT classes and infrastructure for the SNS linac simulations. The PyORBIT linac model has its own lattice description that is necessary to include lattice elements significantly different from the PyORBIT ring elements. The most important among them are accelerating RF structures. The five different RF gap models recently implemented in PyORBIT are discussed. Some benchmarks of the PyORBIT with Parmila, the XAL Online Model, and TraceWin code are presented.
slides icon Slides TUPAF03 [3.244 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
Zgoubi: Recent Developments and Future Plans  
  • D.T. Abell
    RadiaSoft LLC, Boulder, Colorado, USA
  • I.B. Beekman
    ParaTools, Inc., Eugene, Oregon, USA
  • F. Méot
    BNL, Upton, Long Island, New York, USA
  • D.W.I. Rouson
    Sourcery Institute, Oakland, California, USA
  Funding: This work was supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0017181.
The particle tracking code Zgoubi [*] has been used for a broad array of accelerator design studies, including FFAGs and EICs [**]. Zgoubi is currently being used to evaluate proposed designs for both JLEIC and eRHIC [***], and to prepare for commissioning the CBETA BNL-Cornell FFAG return loop ERL [****]. Moreover, Zgoubi is now the subject of a Phase II SBIR aimed at improving its speed, flexibility, and ease-of-use. In this paper, we describe our on-going work on several fronts: (i) parallelizing Zgoubi using new features of Fortran 2018, including coarrays [*****]; (ii) implementing a new particle update algorithm that requires significantly less memory and arithmetic; and (iii) developing symplectic tracking for field maps. In addition, we describe plans for a web-based graphical interface to Zgoubi.
*F Meot, FERMILAB-TM-2010
**F Lemuet, NIM-A, 547:638; F Lin, IPAC17:WEPIK114
***A Kondratenko, IPAC18:MOPML007; F Meot, IPAC18:MOPMF013
****G Hoffstaetter, IPAC18:TUYGBE2
*****J Reid, WG5 N2145
slides icon Slides TUPAF04 [3.011 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
Recent Developments of the Open Source Code OPAL  
  • A. Adelmann
    PSI, Villigen PSI, Switzerland
  After a general introduction of OPAL, I will introduce a set of new features available with version 2.0 released in July 2018. All new features will be presented together with examples of ongoing research projects. In the OPAL-t flavour, elements can now be placed in 3D, without restriction. Overlapping fringe fields are handled, and off-momentum beams as occurring in tolerance studies can be tracked. Furthermore, survey plots of placed elements are a valuable diagnostic when dealing with complex designs. A new element, a flexibly configurable collimator, will be presented. In the OPAL-cyc flavour, a robust way of generating matched distributions with linear space charge is introduced. A new method for describing fixed field accelerators (FFAs) in a very general way will be shown. A new element TRIMCOIL can be used to correct for field-errors in cyclotrons and FFAs. The OPAL language (a derivative of the MAD language) was extended to allow the specification of multi objective optimisation problems, which are then solved with a built in NGSA-II genetic algorithm. A new feature SAMPLER allows you to setup and run random or sequential parameter studies and seamless utilisation of a vast number of computing cores. Finally, a set of Python tools (pyOPALTools) was created for post processing. The manual is now available on the OPAL-wiki as well as in pdf format.  
slides icon Slides TUPAF07 [2.778 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPAF12 Longitudinal Beam Dynamics With a Higher-Harmonic Cavity for Bunch Lengthening 202
  • G. Bassi, J. Tagger
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
We discuss the longitudinal beam dynamics in storage rings in the presence of a higher-harmonic cavity (HHC) system for bunch lengthening. We first review the general conditions for HHC operations, either in active or passive mode, assuming the stability of the system. For uniform filling patterns, a distinction is made between operations with a normal-conducting HHC, where optimal conditions for bunch lengthening can be satisfied, and operations with super-conducting HHC, where optimal conditions can be met only approximately. The option to operate the NSLS-II storage ring with a passive, super-conducting third harmonic cavity (3HC) system is discussed next. The stability and performance of the system in the presence of a gap in the uniform filling, which corresponds to the present mode of operation of the NSLS-II storage ring, is investigated with self-consistent Vlasov-Fokker-Planck simulations performed with the code SPACE*.
* G. Bassi, A. Blednykh and V. Smaluk, Phys Rev. Accel. Beams 19, 024401 (2016).
slides icon Slides TUPAF12 [17.562 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAF12  
About • paper received ※ 20 October 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPAF13 Calculation of the AGS Optics Based on 3D Fields Derived From Experimentally Measured Fields on Median Plane 209
  • N. Tsoupas, J.S. Berg, S.J. Brooks, F. Méot, V. Ptitsyn, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by the US Department of Energy
Closed orbit calculations of the AGS synchrotron were performed and the beam parameters at the extraction point of the AGS [1] were calculated using the RAYTRACE computer code [2] which was modified to generate 3D fields from the experimentally measured field maps on the median plane of the AGS combined function magnets. The algorithm which generates 3D fields from field maps on a plane is described in reference [3] which discusses the details of the mathematical foundation of this approach. In this presentation we will discuss results from studies [1,4] that are based on the 3D fields generated from the known field components on a rectangular grid of a plane. A brief overview of the algorithm used will be given, and two methods of calculating the required field derivatives on the plane will be presented. The calculated 3D fields of a modified Halbach magnet [5] of inner radius of 4.4 cm will be calculated using the two different methods of calculating the field derivatives on the plane and the calculated fields will be compared against the ’ideal’ fields as calculated by the OPERA computer code [6]. [1] N. Tsoupas et. al. ’Closed orbit calculations at AGS and Extraction Beam Parameters at H13 AD/RHIC/RD-75 Oct. 1994 [2] S.B. Kowalski and H.A. Enge ’The Ion-Optical Program Raytrace’ NIM A258 (1987) 407 [3] K. Makino, M. Berz, C. Johnstone, Int. Journal of Modern Physics A 26 (2011) 1807-1821 [4] N. Tsoupas et. al. ’Effects of Dipole Magnet Inhomogeneity on the Beam Ellipsoid’ NIM A258 (1987) 421-425 [5] ’The CBETA project: arXiv.org > physics > arXiv:1706.04245’’ [6] Vector Fields Inc. https://operafea.com/
slides icon Slides TUPAF13 [1.772 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAF13  
About • paper received ※ 20 October 2018       paper accepted ※ 07 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPAF14 Analytical Calculations for Thomson Backscattering Based Light Sources 215
  • P.I. Volz, A. Meseck
    HZB, Berlin, Germany
  There is a rising interest in Thomson-backscattering based light sources, as scattering intense laser radiation on MeV electrons produces high energy photons that would require GeV or even TeV electron beams when using conventional undulators or dipoles. Particularly, medium energy high brightness beams delivered by LINACs or Energy Recovery LINACs, such as BERLinPro being built at Helmholtz-Zentrum Berlin, seem suitable for these sources. In order to study the merit of Thomson-backscattering-based light sources, we are developing an analytical code to simulate the characteristics of the Thomson scattered radiation. The code calculates the distribution of scattered radiation depending on the incident angle and polarization of the laser radiation. Also the impact of the incident laser profile and the full 6D bunch profile, including microbunching, are incorporated. The Status of the code and first results will be presented.  
slides icon Slides TUPAF14 [3.289 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAF14  
About • paper received ※ 21 October 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPAF15 A Holistic Approach to Simulating Beam Losses in the Large Hadron Collider Using BDSIM 221
  • S.D. Walker, A. Abramov, S.T. Boogert, H. Garcia Morales, S.M. Gibson, L.J. Nevay, H. Pikhartova, W. Shields
    JAI, Egham, Surrey, United Kingdom
  To fully understand the beam losses, subsequent radiation, energy deposition, backgrounds and activation in particle accelerators, a holistic approach combining a 3-D model, physics processes and accelerator tracking is required. Beam Delivery Simulation (BDSIM) is a program developed to simulate the passage of particles, both primary and secondary, in particle accelerators and calculate the energy deposited by these particles via material interactions using the Geant4 physics library. A Geant4 accelerator model is built from an existing optical description of a lattice by procedurally placing a set of predefined accelerator components. These generic components can be refined to an arbitrary degree of detail with the use of user-defined geometries, detectors, field maps, and more. A detailed model of the Large Hadron Collider has been created in BDSIM, validated with existing tracking codes and applied to study beam loss patterns.  
slides icon Slides TUPAF15 [2.065 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAF15  
About • paper received ※ 31 October 2018       paper accepted ※ 08 December 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
SNS Beam Test Facility for Experimental Benchmark of High Intensity Beam Dynamics Computer Simulation  
  • A.V. Aleksandrov, S.M. Cousineau, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • B.L. Cathey, Z.L. Zhang
    ORNL RAD, Oak Ridge, Tennessee, USA
  The SNS Beam Test Facility (BTF) is a 2.5 MeV hadron accelerator equipped with state-of-the-art transverse and longitudinal beam diagnostics. The BTF can produce pulsed high intensity H beam with up to 50mA peak current. The expected available beam-on time of a few thousand hours per year provides an opportunity for carrying out advanced high intensity beam dynamics experiments. The first ever direct measurement of 6D phase space distribution of a beam in an accelerator has recently been completed. Preliminary analysis of the data shows a complex phase space structure that is not visible in measurements below 5D, including correlations between degrees of freedom not customarily measured together. This result opens path forward to solving the long-standing problem of initial condition in hadron linac beam dynamics simulation. An extension of the BTF beam line consisting of a FODO line and high dynamic range emittance monitor is being built to provide a test bench for simulation codes benchmarking against measurements in well controlled environment. This paper describes these efforts along with the longer-term plans.  
slides icon Slides TUPAG12 [3.610 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)