Keyword: experiment
Paper Title Other Keywords Page
SUPAG03 Challenges in Extracting Pseudo-Multipoles From Magnetic Measurements multipole, induction, dipole, quadrupole 87
 
  • S. Russenschuck, G. Caiafa, L. Fiscarelli, M. Liebsch, C. Petrone, P. Rogacki
    CERN, Geneva, Switzerland
 
  Ex­tract­ing the co­ef­fi­cients of Fourier-Bessel se­ries, known as pseudo-mul­ti­poles or gen­er­al­ized gra­di­ents, from mag­netic mea­sure­ments of ac­cel­er­a­tor mag­nets in­volves tech­ni­cal and math­e­mat­i­cal chal­lenges. First, a novel de­sign of a short, ro­tat­ing-coil mag­ne­tome­ter is re­quired that does not in­ter­cept any axial field com­po­nent of the mag­net. More­over, dis­plac­ing short mag­ne­tome­ters, step-by-step along the mag­net axis, yields a con­vo­lu­tion of the local mul­ti­pole field er­rors and the sen­si­tiv­ity (test func­tion) of the in­duc­tion coil. The de­con­vo­lu­tion must then con­tent with the low sig­nal-to-noise ratio of the mea­sur­ands, which are in­te­grated volt­ages cor­re­spond­ing to spa­tial flux dis­tri­b­u­tions. Fi­nally, the com­pen­sa­tion schemes, as im­ple­mented on long coils used for mea­sur­ing the in­te­grated field har­mon­ics, can­not be ap­plied to short mag­ne­tome­ters. All this re­quires care­ful de­sign of ex­per­i­ment to de­rive the op­ti­mal length of the in­duc­tion coil, the step size of the scan, and the high­est order of pseudo-mul­ti­poles in the field re­con­struc­tion. This paper pre­sents the the­ory of the mea­sure­ment method, the data ac­qui­si­tion and de­con­vo­lu­tion, and the de­sign and pro­duc­tion of a sad­dle-shaped, ro­tat­ing-coil mag­ne­tome­ter.  
slides icon Slides SUPAG03 [4.548 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAG03  
About • paper received ※ 18 October 2018       paper accepted ※ 27 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPAG05 Muon Background Studies for Beam Dump Operation of the K12 Beam Line at CERN proton, target, background, simulation 93
 
  • M.S. Rosenthal, D. Banerjee, J. Bernhard, M. Brugger, N. Charitonidis, B. Döbrich, L. Gatignon, A. Gerbershagen, E. Montbarbon, B. Rae, M.W.U. Van Dijk
    CERN, Geneva, Switzerland
  • T. Spadaro
    INFN/LNF, Frascati, Italy
 
  In the scope of the Physics Be­yond Col­lid­ers study at CERN a fu­ture op­er­a­tion of the NA62 ex­per­i­ment in beam dump mode is dis­cussed, en­abling the search for dark sec­tor par­ti­cles, e.g. heavy neu­tral lep­tons, dark pho­tons and ax­ions. For this pur­pose, the 400 GeV/c pri­mary pro­ton beam, ex­tracted from the SPS, will be dumped on a mas­sive dump col­li­ma­tor lo­cated in the front end of the K12 beam line. Muons orig­i­nat­ing from in­ter­ac­tions and de­cays form a po­ten­tial back­ground for this kind of ex­per­i­ment. To re­duce this back­ground, mag­netic sweep­ing within the beam line is em­ployed. In this con­tri­bu­tion, the muon pro­duc­tion and trans­port has been in­ves­ti­gated with the sim­u­la­tion frame­work G4beam­line. The high com­pu­ta­tional ex­pense of the muon pro­duc­tion has been re­duced by im­ple­ment­ing sam­pling meth­ods and pa­ram­e­triza­tions to es­ti­mate the amount of high-en­ergy muons and ef­fi­ciently study op­ti­miza­tions of the mag­netic field con­fig­u­ra­tion. These meth­ods have been bench­marked with mea­sured data, show­ing a good qual­i­ta­tive agree­ment. Fi­nally, first stud­ies to re­duce the muon back­ground by adapt­ing the mag­netic field con­fig­u­ra­tion are pre­sented, promis­ing a po­ten­tial back­ground re­duc­tion by a fac­tor four.  
slides icon Slides SUPAG05 [1.885 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-SUPAG05  
About • paper received ※ 19 October 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLG01 Challenges in Simulating Beam Dynamics of Dielectric Laser Acceleration laser, electron, focusing, acceleration 120
 
  • U. Niedermayer, O. Boine-Frankenheim, T. Egenolf, E. Skär
    TEMF, TU Darmstadt, Darmstadt, Germany
  • A. Adelmann, S. Bettoni, M. Calvi, M.M. Dehler, E. Ferrari, F. Frei, D. Hauenstein, B. Hermann, N. Hiller, R. Ischebeck, C. Lombosi, E. Prat, S. Reiche, L. Rivkin
    PSI, Villigen PSI, Switzerland
  • R.W. Aßmann, U. Dorda, M. Fakhari, I. Hartl, W. Kuropka, F. Lemery, B. Marchetti, F. Mayet, H. Xuan, J. Zhu
    DESY, Hamburg, Germany
  • D.S. Black, P. N. Broaddus, R.L. Byer, A.C. Ceballos, H. Deng, S. Fan, J.S. Harris, T. Hirano, Z. Huang, T.W. Hughes, Y. Jiang, T. Langenstein, K.J. Leedle, Y. Miao, A. Pigott, N. Sapra, O. Solgaard, L. Su, S. Tan, J. Vuckovic, K. Yang, Z. Zhao
    Stanford University, Stanford, California, USA
  • H. Cankaya, A. Fallahi, F.X. Kärtner
    CFEL, Hamburg, Germany
  • D.B. Cesar, P. Musumeci, B. Naranjo, J.B. Rosenzweig, X. Shen
    UCLA, Los Angeles, USA
  • B.M. Cowan
    Tech-X, Boulder, Colorado, USA
  • R.J. England
    SLAC, Menlo Park, California, USA
  • E. Ferrari, L. Rivkin
    EPFL, Lausanne, Switzerland
  • T. Feurer
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
  • P. Hommelhoff, A. Li, N. Schönenberger, R. Shiloh, A.D. Tafel, P. Yousefi
    University of Erlangen-Nuremberg, Erlangen, Germany
  • Y.-C. Huang
    NTHU, Hsinchu, Taiwan
  • J. Illmer, A.K. Mittelbach
    Friedrich-Alexander Universität Erlangen-Nuernberg, University Erlangen-Nuernberg LFTE, Erlangen, Germany
  • F.X. Kärtner
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • W. Kuropka, F. Mayet
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • Y.J. Lee, M. Qi
    Purdue University, West Lafayette, Indiana, USA
  • E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
 
  Funding: ACHIP is funded by the Gordon and Betty Moore Foundation (Grant No. GBMF4744). U.N. acknowledges German BMBF Grant No. FKZ:05K16RDB. B.C. acknowledges NERSC, Contract No. DE-AC02-05CH11231.
Di­elec­tric Laser Ac­cel­er­a­tion (DLA) achieves the high- est gra­di­ents among struc­ture-based elec­tron ac­cel­er­a­tors. The use of di­electrics in­creases the break­down field limit, and thus the achiev­able gra­di­ent, by a fac­tor of at least 10 in com­par­i­son to met­als. Ex­per­i­men­tal demon­stra­tions of DLA in 2013 led to the Ac­cel­er­a­tor on a Chip In­ter­na­tional Pro­gram (ACHIP), funded by the Gor­don and Betty Moore Foun­da­tion. In ACHIP, our main goal is to build an ac­celer- ator on a sil­i­con chip, which can ac­cel­er­ate elec­trons from below 100keV to above 1MeV with a gra­di­ent of at least 100MeV/m. For sta­ble ac­cel­er­a­tion on the chip, mag­net- only fo­cus­ing tech­niques are in­suf­fi­cient to com­pen­sate the strong ac­cel­er­a­tion de­fo­cus­ing. Thus spa­tial har­monic and Al­ter­nat­ing Phase Fo­cus­ing (APF) laser-based fo­cus­ing tech- niques have been de­vel­oped. We have also de­vel­oped the sim­pli­fied sym­plec­tic track­ing code DLA­track6D, which makes use of the pe­ri­od­ic­ity and ap­plies only one kick per DLA cell, which is cal­cu­lated by the Fourier co­ef­fi­cient of the syn­chro­nous spa­tial har­monic. Due to cou­pling, the Fourier co­ef­fi­cients of neigh­bor­ing cells are not en­tirely in­de­pen­dent and a field flat­ness op­ti­miza­tion (sim­i­larly as in multi-cell cav­i­ties) needs to be per­formed. The simu- la­tion of the en­tire ac­cel­er­a­tor on a chip by a Par­ti­cle In Cell (PIC) code is pos­si­ble, but im­prac­ti­cal for op­ti­miza­tion pur­poses. Fi­nally, we have also out­lined the treat­ment of wake field ef­fects in at­tosec­ond bunches in the grat­ing within DLA­track6D, where the wake func­tion is com­puted by an ex­ter­nal solver.
 
slides icon Slides MOPLG01 [3.947 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-MOPLG01  
About • paper received ※ 20 October 2018       paper accepted ※ 24 October 2018       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAF02 Realistic Modeling of the Muon g-2 Experiment Beamlines at Fermilab simulation, target, storage-ring, proton 134
 
  • D. Tarazona, M. Berz, K. Makino
    MSU, East Lansing, Michigan, USA
  • D. Stratakis, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Award No. DE-FG02-08ER41546, by the PhD Accelerator Program at Fermilab, and by a Strategic Partnership Grant from the MSU Foundation.
The main goal of the Muon g-2 Ex­per­i­ment at Fer­mi­lab (E989) is to mea­sure the muon anom­alous mag­netic mo­ment (a, also dubbed as the "anom­aly’’) to un­prece­dented pre­ci­sion. This new mea­sure­ment will allow to test the com­plete­ness of the Stan­dard Model (SM) and to val­i­date other the­o­ret­i­cal mod­els be­yond the SM. Sim­u­la­tions of the beam­lines from the pion pro­duc­tion tar­get to the en­trance of the g-2 Stor­age Ring using COSY IN­FIN­ITY con­tribute to the un­der­stand­ing and char­ac­ter­i­za­tion of the muon beam pro­duc­tion in re­la­tion to the sta­tis­ti­cal and sys­tem­at­ics un­cer­tain­ties of the E989 mea­sure­ment. The ef­fect of non­lin­earites from fringe fields and high-or­der con­tri­bu­tions on the beam de­liv­ery sys­tem per­for­mance are con­sid­ered, as well as in­ter­ac­tions with the beam­line el­e­ments aper­tures, par­ti­cle decay chan­nels, spin dy­nam­ics, and beam­line mis­align­ments.
 
slides icon Slides MOPAF02 [14.110 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-MOPAF02  
About • paper received ※ 22 October 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAG22 Main and Fringe Field Computations for the Electrostatic Quadrupoles of the Muon g-2 Experiment Storage Ring quadrupole, multipole, storage-ring, FEL 313
 
  • E.V. Valetov, M. Berz
    MSU, East Lansing, Michigan, USA
 
  Funding: This work was supported by the U.S. Department of Energy under Contract DE-FG02-08ER41546 and by Fermi Research Alliance for U.S. Department of Energy under Contract DE-AC02-07CH11359.
We con­sider semi-in­fi­nite elec­tro­sta­tic de­flec­tors with plates of dif­fer­ent thick­ness, in­clud­ing plates with rounded edges, and we cal­cu­late their elec­tro­sta­tic po­ten­tial and field using con­for­mal map­pings. To val­i­date the cal­cu­la­tions, we com­pare the fringe fields of these elec­tro­sta­tic de­flec­tors with fringe fields of fi­nite elec­tro­sta­tic ca­pac­i­tors, and we ex­tend the study to fringe fields of ad­ja­cent elec­tro­sta­tic de­flec­tors with con­sid­er­a­tion of elec­tro­sta­tic in­duc­tion, where field falloffs of semi-in­fi­nite elec­tro­sta­tic de­flec­tors are slower than ex­po­nen­tial and thus be­have dif­fer­ently from most mag­netic fringe fields. Build­ing on the suc­cess with elec­tro­sta­tic de­flec­tors, we de­velop a highly ac­cu­rate and fully Maxwellian con­for­mal map­pings method for cal­cu­la­tion of main fields of elec­tro­sta­tic par­ti­cle op­ti­cal el­e­ments. A re­mark­able ad­van­tage of this method is the pos­si­bil­ity of rapid re­cal­cu­la­tions with geo­met­ric asym­me­tries and mis­pow­ered plates. We use this con­for­mal map­pings method to cal­cu­late the mul­ti­pole terms of the high volt­age quadru­pole used in the stor­age ring of the Muon g-2 Ex­per­i­ment (FNAL-E-0989). Com­plet­ing the method­olog­i­cal frame­work, we pre­sent a method for ex­tract­ing mul­ti­pole strength falloffs of a par­ti­cle op­ti­cal el­e­ment from a set of Fourier mode falloffs. We cal­cu­late the quadru­pole strength falloff and its ef­fec­tive field bound­ary (EFB) for the Muon g-2 quadru­pole, which has ex­plained the ex­per­i­men­tally mea­sured tunes, while sim­ple es­ti­mates based on a lin­ear model ex­hib­ited dis­crep­an­cies up to 2%.
 
slides icon Slides TUPAG22 [3.780 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICAP2018-TUPAG22  
About • paper received ※ 15 October 2018       paper accepted ※ 28 January 2019       issue date ※ 26 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)